Supporting Information

For

Effect of Formamidinium (FA) ions on the Mixed ‘A’-site Based Bromide Perovskite (APbBr₃) Thin Films

Deepak Aloysius¹, Arindam Mondal¹, Satyajit Gupta¹*, Eran Edri², Sabyasachi Mukhopadhyay³.

¹Department of Chemistry, Indian Institute of Technology Bhilai, Chhattisgarh, India
²Department of Chemical Engineering, Ben-Gurion University of the Negev, Israel
³Department of Physics, SRM University-AP, Andhra Pradesh, India

*Corresponding Author; email: satyajit@iitbhilai.ac.in

S1 Goldsmith’s Tolerance factor (t) and Octahedral Factor (μ)

\[t = \frac{r_{A_{\text{effective}}} + r_{Br^{-}}}{\sqrt{2} (r_{Pb^{2+}} + r_{Br^{-}})} \]

\[\mu = \frac{r_{Pb^{2+}}}{r_{Br^{-}}} \]

For PbBr₆⁴⁻ octahedra, the ‘μ’ value is 0.607. To form stable BX₆ octahedra, ‘μ’ should be between 0.442 to 0.895. Also, the ‘t’ value for FA₀.₅MA₀.₄Cs₀.₁PbBr₃ is 0.961 and that for MA₀.₉Cs₀.₁PbBr₃ is 0.92. For perovskites to follow a cubical structure, ‘t’ should be between 0.813 to 1.107.
XRD after CV analysis

Fig. S1 XRD after CV within electrochemical stability window (1.5 V to -0.8 V) and beyond stability window (2.5 V to -2.5 V) of a) MA$_{0.9}$Cs$_{0.1}$PbBr$_3$ and b) FA$_{0.5}$MA$_{0.4}$Cs$_{0.1}$PbBr$_3$ perovskites.

S2 Formal Potential and HOMO level determination from CV

To calibrate the electrochemical system and determine the formal potential, 1.9 mM ferrocene was dissolved in the solvent-electrolyte mixture. The corresponding CV was measured with blank FTO using Ag/AgCl reference electrode and Pt counter electrode. We determined The formal potential by taking the average of both oxidation (1.07 V) and reduction peak potentials (-0.24 V), as shown in Fig. S2a. The HOMO energy level of both HOIPs was determined by the oxidation potential generated from the CV peak.
The equation is $E_{\text{HOMO}} = -[(E_{\text{ox}} - E_{1/2\text{ferrocene}}) + 4.8] \text{ eV}$, where E_{ox} is the oxidation peak potential and $E_{1/2\text{ferrocene}}$ is the formal potential obtained2. In comparison, Fc/Fe$^+$ redox reference and 4.8 eV is the HOMO energy level of ferrocene, which is already known.

Formal potential,

$$E_{(1/2)} = \frac{1}{2} [E_{p(o)} + E_{p(r)}]$$

$$E(1/2) = \frac{1}{2} [1.07 + (-0.24)]$$

$$= -0.41 \text{ V}$$

HOMO energy level of FA$_{0.3}$MA$_{0.4}$Cs$_{0.1}$PbBr$_3$,

$$\text{FA}_{0.3}\text{MA}_{0.4}\text{Cs}_{0.1}\text{PbBr}_3$$

$$E_{(\text{HOMO})} = -[(E_{\text{ox}} - E_{1/2\text{ferrocene}}) + 4.8]$$

$$= -[1.29 - 0.41] + 4.8$$

$$= -5.68 \text{ eV}$$

HOMO energy level of MA$_{0.9}$Cs$_{0.1}$PbBr$_3$,

$$\text{MA}_{0.9}\text{Cs}_{0.1}\text{PbBr}_3$$

$$E_{(\text{HOMO})} = -[(E_{\text{ox}} - E_{1/2\text{ferrocene}}) + 4.8] \text{ eV}$$

$$= -[1.21 - 0.41] + 4.8$$

$$= -5.60 \text{ eV}$$
Fig. S3: a) I-V curve b) EQE of Perovskite solar cell devices made of both FA$_{0.5}$MA$_{0.4}$Cs$_{0.1}$PbBr$_3$ and MA$_{0.9}$Cs$_{0.1}$PbBr$_3$ perovskites. c) SEM image showing perovskite solar cell cross-section.

Fig. S4: Time-resolved PL data of both FA$_{0.5}$MA$_{0.4}$Cs$_{0.1}$PbBr$_3$ and MA$_{0.9}$Cs$_{0.1}$PbBr$_3$ perovskites. The average lifetime (τ) of FA$_{0.5}$MA$_{0.4}$Cs$_{0.1}$PbBr$_3$ perovskite is 124 ps and that of MA$_{0.9}$Cs$_{0.1}$PbBr$_3$ perovskites is 85 ps.
Table S1 Atomic % ratio of Cs, Pb and Br elements in perovskite thin films

<table>
<thead>
<tr>
<th>Perovskite Composition</th>
<th>Atomic % (±4%) Cs: Pb: Br</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA<sub>0.5</sub>MA<sub>0.4</sub>Cs<sub>0.1</sub>PbBr<sub>3</sub></td>
<td>3.4: 28.2: 68.1</td>
</tr>
<tr>
<td>MA<sub>0.9</sub>Cs<sub>0.1</sub>PbBr<sub>3</sub></td>
<td>3.7: 28.1: 68.5</td>
</tr>
</tbody>
</table>

Table S2 Perovskite solar cell device parameters.

<table>
<thead>
<tr>
<th>HTM</th>
<th>Perovskite Composition</th>
<th>V<sub>oc</sub> (V)</th>
<th>J<sub>sc</sub> (mA/cm<sup>2</sup>)</th>
<th>Fill Factor (%)</th>
<th>Efficiency (η)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTAA</td>
<td>FA<sub>0.5</sub>MA<sub>0.4</sub>Cs<sub>0.1</sub>PbBr<sub>3</sub></td>
<td>0.67</td>
<td>-3.22</td>
<td>51.1</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>MA<sub>0.9</sub>Cs<sub>0.1</sub>PbBr<sub>3</sub></td>
<td>0.62</td>
<td>-2.71</td>
<td>53.59</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Notes and references:
