Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

Supporting information

Heteroatoms preintercalated CI-terminated Ti₃C₂T_x MXene wrapped with

Mesoporous Fe₂O₃ Nanospheres for improved Sodium ion Storage

Yishao Liu^a, Chenyu Gao^a, Ruxuan Zhou^a, Feng Hong^a, Guoqing Tong^a, Li Wang^{b,*},

Yang Jiang^{a,*}

^{a.}School of Materials Science and Engineering, ^b School of Chemistry and Chemical Engineering,

Hefei University of Technology, 230009, Hefei, P. R. China.

*Corresponding authors: Yang Jiang (email: apjiang@hfut.edu.cn), and Li Wang (email:

wlgmri@sina.com)

Figure S1. SEM image of the densely packed Ti₃AlC₂ precursor.

Figure S2(a). SEM image of $Ti_3C_2T_x$ MXene nanosheets after borohydride treatment.

Figure S2(b). SEM image of Fe₂O₃-Ti₃C₂T_xcomposite.

Figure S3. EDS mapping images of Ti₃C₂T_x MXene nanosheets after borohydride treatment.

Figure S4. XRD pattern of pristine Ti₃AlC₂.

Figure S5. The corresponding EDS mapping images of Cl-terminated Ti₃C₂T_x MXene after APS solution treatment.

Figure S6. The high-resolution spectra of (a) the Cl 2p for Fe₂O₃@Ti₃C₂T_xcomposite, (b) and the Al 2p for Ti₃C₂T_x MXene.

Figure S7. The CV curves of (a) $Ti_3C_2T_x$ MXene, (b) and Fe₂O₃ for initial three cycles at a scan rate of 0.1 mV s⁻¹.

Figure S8. Cycling performance of MXene without heteroatoms pre-intercalation at a current density of 1.0 A g⁻¹.

Figure S9. Rate capability performance of MXene without heteroatoms pre-intercalation anode.

Figure S10. CV curves(a), Log (peak current) versus log (sweep rate) plots(b), and Contribution ratios of capacitive and diffusion-controlled behaviors(c) at different sweep rates of Fe2O3 electrode.

	Performance		
Materials	Cycling [Capacity(mA h g ⁻¹)/Current density(A g ⁻¹)/Cycles]	Rate [Capacity(mA h g-1)/Current density(A g ⁻¹)]	References
Fe ₂ O ₃ @MXene	350/1/200	188.5/4	This work
Fe ₂ O ₃ @mGC	377/0.1/100	267/4	S1 ¹
Hierarchical Fe ₃ O ₄ hollow nanostructures	150/0.1/50	80/1	S 2 ²
Fe ₂ O ₃ :Ge NFs	320/0.05/50	140/2	S3 ³
C@Fe ₂ O ₃	305/0.05/100	150/1	$S4^4$
Fe ₂ O ₃ @GNS	440/0.1/100	126/2	S5 ⁵
MFe ₂ O ₃ @N-HCNs	417/0.1/100	102/5	S6 ⁶

Table S1. Comparison of electrochemical performance for the similar anode materials fromthis work and previous reports

References:

- 1. T. Hou, X. Sun, D. Xie, M. Wang, A. Fan, Y. Chen, S. Cai, C. Zheng and W. Hu, 2018, **24**, 14786-14793.
- 2. K. Zhou, Y. Zhen, Z. Hong, J. Guo and Z. Huang, *Materials Letters*, 2017, **190**, 52-55.
- 3. B. Petrovičovà, C. Ferrara, G. Brugnetti, C. Ritter, M. Fracchia, P. Ghigna, S. Pollastri, C. Triolo, L. Spadaro, R. Ruffo and S. Santangelo, 2021, **11**, 1483.
- 4. Y. Zhang, Z. Bakenov, T. Tan and J. Huang, 2018, **8**, 461.
- 5. D. Li, J. Zhou, X. Chen and H. Song, *ACS Applied Materials & Interfaces*, 2016, **8**, 30899-30907.
- 6. M. Chen, D. Niu, J. Mao, G. Jiang, K. Li, G. Huang, X. Jin and Y. Li, *ACS Applied Energy Materials*, 2021, **4**, 5888-5896.