Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Phenylboronic acid conjugated poly(3,4-ethylenedioxythiophene)(PEDOT) coated Ag dendrite for electrochemical non-enzymatic glucose sensing

Lijuan Li^{†1,2}, Wenfeng Hai^{†*1}, Zhiran Chen¹, Yang Liu¹, Yushuang Liu¹, Zhelin Liu^{*2}, Jinghai Liu¹

1 Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China.

2 School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.

*Corresponding author: Wenfeng Hai (<u>hai_wenfeng@163.com</u>); Zhelin Liu (zhelliu@hotmail.com)

[†]Co-first author: These authors contributed to this work equally and should be regarded as co-first authors.

Figure S1. ¹H NMR (500 MHz, D₂O) spectra of poly(EDOT-PBA) δ 7.42 (q, *J* = 7.7 Hz, 4H), 6.29 (s, 2H), 4.73 (s, H₂O), 4.25 (d, *J* = 5.6 Hz, 1H), 4.16 – 3.83 (m, 2H), 3.50 (d, *J* = 5.3 Hz, 2H).

Figure S2. The morphology of the Ag on Cu/GCE at different conditions. (a-c) when deposition time is (a) 30 s, 60 s and 180 s in 20 mM AgNO₃ aqueous solution, and (d-f) in 5 mM, 10 mM, and 20 mM AgNO₃ solution deposited for 120 s.

Figure S3. XPS wide-scan spectra of (a) Ag/Cu/GCE and (b) Poly(EDOT-PBA)/Ag/Cu/GCE films.

Table S1. Elemental composition and calculated atom	ne percentage of each element on surface of
Ag/Cu/GCE and Poly(EDOT-PBA)/Ag/Cu/GCE film	5.

		Ag/Cu/GCE	Poly(EDOT-PBA)/Ag/Cu/GCE
Elements	Peak BE	Atomic%	Atomic%
C1s	284.81	35.09	68.2
Ols	532.06	24.63	17.91
N1s	399.04	1.2	4.51
S2p	164.2	0	3.36
B1s	188.55	0	2.98
Cl2p	197.88	0.43	0.93
Ag3d	367.78	20.81	1.74
Cu2p	934.08	17.84	0.37

Figure S4. Change of current and voltage with time during electrode modification. (a) Cu2+ is reduced to Cu and deposited on the glassy carbon electrode. A constant voltage of -0.3V was applied to the glass carbon working electrode for 60 seconds in an electrolyte consisting of 1 mL CuSO₄ (15 mM) solution and 0.1 mL H₂SO₄ (5 mM). (b) the Ag that is not covered by the poly(EDOT-PBA) reacts to form AgCl. The poly(EDOT-PBA)/Ag/Cu/GCE as the working electrode was placed in 1 mL HCl (1 mM) solution to react at a constant voltage of 1 V for 60 s. Platinum wire was used as the counter electrode and Ag/AgCl (in 3.3 M KCl aqueous solution) as the reference electrode.