Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Developing bulky P-alkene ligands: Stabilization of copper complexes with 14 valence electrons

Alexander Grasruck¹, Giorgio Parla¹, Frank Heineman¹, Jens Langer¹, Alberto Herrera¹, Sybille Frieß¹,

Günter Schmid², Romano Dorta^{1*}

 ¹⁾ Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
 ²⁾ Siemens Energy Global GmbH & Co. KG, New Energy Business – Technology & Products Freyeslebenstraße 1, 91058 Erlangen, Germany

Topographic map of 7 coordinated in complex 10 (left) and complex 14 (right).

Topographic map of 7 coordinated in complex 16 (left) and of 8 in complex 12 (right).

Topographic map of 9 coordinated in complex 18 (left) and of 20 in complex 22 (right).

The steric maps were generated with SambVca 2.1 and are based on the crystal structures. Sphere radius is 3.5 Å, and Bondi radii are scaled at 1.17. For all complexes the Cu atom was defined as the centre of the sphere and the z axis was placed along the Cu-P bond. In the dimeric complexes **12** and **22**, the Cu, Cl, and H atoms were not included in the calculations. In addition, for the monomeric complexes **10**, **12**, **14**, **16**, and **18** one of the two ligand was excluded.

ligand	complex	V‰bur
	10	33.9
7	14	36.6
	16	38.2
8	12	37,7
9	18	43.5
20	22	46.6
21	23	60.6

Table S1: Values of the buried volumes of the ligands in complexes.

Crystallographic Tolman angle in complex 23

Müller, T. E.; Mingos, D. M. P. Determination of the Tolman cone angle from parameters and a statistical analysis using the Crystallographic Data Base *Transition Met. Chem.* **1995**, *20*, 533-539.

Law of cosines:

$$a^{2} = b^{2} + c^{2} - 2b. c. \cos A$$
$$d^{\prime 2} = d^{2} + 12^{2} - 2. d. 12. \cos \beta$$
$$d^{\prime} = \pm \sqrt{d^{2} + 12^{2} - 2. d. 12. \cos \beta}$$

Law of sines:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$\frac{12}{\sin \alpha'} = \frac{d'}{\sin \beta}$$
$$\sin \alpha' = \frac{12.\sin \beta}{d'}$$
$$\alpha' = \sin^{-1}\frac{12.\sin \beta}{d'}$$

In order to make sure that the principal value of \sin^{-1} is correct it is preferrable to use:

$$\gamma = \sin^{-1}\frac{12.\sin\beta}{d'}$$

Law of angles in triangle:

$$\alpha' + \beta + \gamma = 180$$
$$\alpha' = 180 - \gamma - \beta$$

$$\begin{array}{c} N1 - H7 & (\Theta_{1} = 110.7^{\circ}) \\ d = 307.6 & \alpha = 93.98^{\circ} & (3 = 86.02^{\circ}) \\ d' = 307.0 \implies \alpha' = 91.7^{\circ} & ; & \frac{\Gamma_{4}}{dr} = 0.3257 \\ n = 2.73^{\circ} & \alpha'' = 19.0^{\circ} \\ n = 2.73^{\circ} & \alpha'' = 19.0^{\circ} \\ n = 1.32^{\circ} & \Theta_{2} = 113.3^{\circ} & \alpha'' = 19.0^{\circ} \\ d = 508.3 & \alpha = 103.21^{\circ} & \beta = 76.79^{\circ} \\ d' = 505.7 \\ d' = 505.7 \\ d' = 1.32^{\circ} \implies \alpha' = 101.9^{\circ} & i & \frac{\Gamma_{4}}{dr} = 0.1977 \\ n = 1.32^{\circ} \implies \alpha' = 109.25^{\circ} & \beta'' = 11.4^{\circ} \\ d = 494.9 & \alpha = 109.25^{\circ} & \beta = 70.75^{\circ} \\ d' = 491.1 & i & \frac{\Gamma_{4}}{dr} = 0.2036 \\ p = 1.32^{\circ} \implies \alpha' = 107.9^{\circ} & \alpha'' = 11.7^{\circ} \end{array}$$

Figure S2: ³¹P NMR of 7 in C₆D₆.

Figure S3: 13 C NMR of 7 in C₆D₆.

Figure S4: ¹H NMR of **8** in C_6D_6 .

Figure S6: ¹³C NMR of 8 in C₆D₆.

Figure S9: ¹³C NMR of 9 in CDCl₃.

Figure S10: ¹H NMR of 10 in CDCl₃.

Figure S11: ³¹P NMR of 10 in CDCl₃ (the small peak is an artifact)

Figure S12: ¹³C NMR of 10 in CDCl₃.

Figure S14: ³¹P NMR of **11** in C₆D₆.

Figure S16: ¹H NMR of 12 in C_6D_6 .

Figure S17: ³¹P NMR of **12** in C₆D₆.

Figure S18: ¹³C NMR of 12 in CDCl₃.

Figure S20: ³¹P NMR of 13 in CDCl₃ (the small peak is an artefact)

Figure S23: ³¹P NMR of **14** in C₆D₆.

Figure S24: ¹³C NMR of 12 in CDCl₃.

Figure S26: ³¹P NMR of 13 in CDCl₃.

Figure S28: ¹H NMR of 14 in CD₂Cl₂.

8

Figure S29: ³¹P NMR of 14 in CD₂Cl₂.

Figure S30: ¹⁹F NMR of 14 in CD₂Cl₂.

Figure S32: ¹H NMR of 15 in CDCl₃.

Figure S34: ¹³C NMR of 15 in CDCl₃.

Figure S36: ³¹P NMR of **16** in C₆D₆.

Figure S38: ¹H NMR of 17 in CD₂Cl₂.

Figure S42: ³¹P NMR of 18 in CDCl₃.

Figure S44: ¹³C NMR of 18 in CDCl₃.

Figure S46: ³¹P NMR of **19** in C₆D₆.

Figure S47: ¹³C NMR of **19** in C₆D₆.

Figure S48: ¹H NMR of 20 in CDCl₃

Figure S50: ¹³C NMR of 20 in CDCl₃.

Figure S52: ³¹P NMR of **21** in C₆D₆.

Figure S55: ³¹P NMR of **22** in CDCl₃.

Figure S56: ¹³C NMR of 22 in CDCl₃.

Figure 58: ³¹P NMR of 23 in CDCl₃.

Figure S62: ¹⁹F NMR of 24 in CDCl₃.

Figure S63: ¹³C NMR of 24 in CDCl₃.

Figure S64: ¹H NMR of 25 in CD₃NO₂.

Figure S65: ³¹P NMR of 25 in CD₃NO₂.

Figure S68: ³¹P NMR of 26 in CD₂Cl₂.

Figure S69: ¹¹B NMR of 26 in CD₂Cl₂.

Figure S70: ¹⁹F NMR of 26 in CD₂Cl₂.

Figure S71: ¹³C NMR of 26 in CD₂Cl₂