Supporting Information

Developing bulky P-alkene ligands: Stabilization of copper complexes with 14 valence electrons

Alexander Grasruck ${ }^{1}$, Giorgio Parla ${ }^{1}$, Frank Heineman ${ }^{1}$, Jens Langer ${ }^{1}$, Alberto Herrera ${ }^{1}$, Sybille Frie ${ }^{1}{ }^{1}$, Günter Schmid ${ }^{2}$, Romano Dorta ${ }^{1 *}$
${ }^{1)}$ Department Chemie und Pharmazie, Anorganische und Allgemeine Chemie, Friedrich-AlexanderUniversität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
${ }^{2)}$ Siemens Energy Global GmbH \& Co. KG, New Energy Business - Technology \& Products Freyeslebenstraße 1, 91058 Erlangen, Germany

Topographic map of 7 coordinated in complex 10 (left) and complex 14 (right).

Topographic map of 7 coordinated in complex 16 (left) and of $\mathbf{8}$ in complex 12 (right).

Topographic map of 9 coordinated in complex 18 (left) and of 20 in complex 22 (right).

The steric maps were generated with SambVca 2.1 and are based on the crystal structures. Sphere radius is $3.5 \AA$, and Bondi radii are scaled at 1.17 . For all complexes the Cu atom was defined as the centre of the sphere and the z axis was placed along the $\mathrm{Cu}-\mathrm{P}$ bond. In the dimeric complexes $\mathbf{1 2}$ and 22, the Cu, Cl, and H atoms were not included in the calculations. In addition, for the monomeric complexes $10,12,14,16$, and 18 one of the two ligand was excluded.

ligand	complex	V\%bur
	$\mathbf{1 0}$	33.9
$\mathbf{7}$	$\mathbf{1 4}$	36.6
	$\mathbf{1 6}$	38.2
$\mathbf{8}$	$\mathbf{1 2}$	37,7
$\mathbf{9}$	$\mathbf{1 8}$	43.5
$\mathbf{2 0}$	$\mathbf{2 2}$	46.6
$\mathbf{2 1}$	$\mathbf{2 3}$	60.6

Table S1: Values of the buried volumes of the ligands in complexes.

Crystallographic Tolman angle in complex 23

Müller, T. E.; Mingos, D. M. P. Determination of the Tolman cone angle from parameters and a statistical analysis using the Crystallographic Data Base Transition Met. Chem. 1995, 20, 533-539.

Law of cosines:

$$
\begin{gathered}
a^{2}=b^{2}+c^{2}-2 b \cdot c \cdot \cos A \\
d^{\prime 2}=d^{2}+12^{2}-2 . d .12 \cdot \cos \beta \\
\boldsymbol{d}^{\prime}= \pm \sqrt{ }\left(\boldsymbol{d}^{2}+\mathbf{1 2}^{2}-\mathbf{2} \cdot \boldsymbol{d} \cdot \mathbf{1 2} \cdot \cos \boldsymbol{\beta}\right)
\end{gathered}
$$

Law of sines:

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
\frac{12}{\sin \alpha^{\prime}}=\frac{d^{\prime}}{\sin \beta} \\
\sin \alpha^{\prime}=\frac{12 \cdot \sin \beta}{d^{\prime}} \\
\alpha^{\prime}=\sin ^{-1} \frac{12 \cdot \sin \beta}{d^{\prime}}
\end{gathered}
$$

In order to make sure that the principal value of $\sin ^{-1}$ is correct it is preferrable to use:

$$
\gamma=\sin ^{-1} \frac{12 \cdot \sin \beta}{d^{\prime}}
$$

Law of angles in triangle:

$$
\begin{aligned}
& \alpha^{\prime}+\beta+\gamma=180 \\
& \boldsymbol{\alpha}^{\prime}=\mathbf{1 8 0}-\boldsymbol{\gamma}-\boldsymbol{\beta}
\end{aligned}
$$

$$
\begin{aligned}
& \text { N1-H7 } \theta_{1}=110.7^{\circ} \\
& d=307.6 \quad \alpha=93.98^{\circ} \quad \beta=86.02^{\circ} \\
& \begin{array}{l}
d^{\prime}=307.0 \Rightarrow \alpha^{\prime}=91.7^{\circ} \quad \text { i } \frac{r_{H}}{d^{\prime}}=0.3257 \\
\alpha=2.230
\end{array} \\
& \begin{array}{ll}
\gamma=2.23^{\circ} \quad & \quad \alpha^{\prime}=113.3^{\circ} \quad
\end{array} \quad \alpha^{\prime \prime}=19.0^{\circ} \\
& \mathrm{N} 2-\mathrm{H} 25 \quad \theta_{2}=113.3^{\circ} \\
& d=508.3 \quad \alpha=103.21^{\circ} \quad \beta=76.79^{\circ} \\
& \begin{array}{l}
d^{\prime}=505.7 \\
\delta^{\prime}=1.32^{\circ} \Rightarrow \alpha^{\prime}=101.9^{\circ} \quad ; \quad \frac{r_{H}}{d^{\prime}}=0.1977
\end{array} \\
& \text { N3-H39 } \quad \theta_{3}=119.6^{\circ} \\
& \alpha^{\prime \prime}=11.4^{\circ} \\
& d=494.9 \quad \alpha=109.25^{\circ} \quad \beta=70.75^{\circ} \\
& d^{\prime}=491.1 \\
& \mu=1.32^{\circ} \Rightarrow \alpha^{\prime}=107.9^{\circ} \\
& i \frac{r_{H}}{d^{\prime}}=0.2036 \\
& \alpha^{\prime \prime}=11.7^{\circ}
\end{aligned}
$$

$$
\begin{gathered}
\sum \theta_{i}=343.7^{\circ} \\
\omega=229^{\circ}
\end{gathered}
$$

Figure S1: ${ }^{1} \mathrm{H}$ NMR of 7 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S2: ${ }^{31} \mathrm{P}$ NMR of 7 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S3: ${ }^{13} \mathrm{C}$ NMR of 7 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S4: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S5: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S6: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{8}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S7: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{9}$ in CDCl_{3}.

Figure S8: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{9}$ in CDCl_{3}.

Figure S9: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{9}$ in CDCl_{3}.

Figure S10: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0}$ in CDCl_{3}.

Figure S11: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{1 0}$ in CDCl_{3} (the small peak is an artifact)

Figure S12: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 0}$ in CDCl_{3}.

Figure S13: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S14: ${ }^{31} \mathrm{P}$ NMR of 11 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S15: ${ }^{13} \mathrm{C}$ NMR of 11 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S16: ${ }^{1} \mathrm{H}$ NMR of 12 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S17: ${ }^{31} \mathrm{P}$ NMR of 12 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S18: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2}$ in CDCl_{3}.

Figure S19: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3}$ in CDCl_{3}.

Figure S20: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{1 3}$ in CDCl_{3} (the small peak is an artefact)

Figure S21: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3}$ in CDCl_{3}.

Figure S22: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 4}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S23: ${ }^{31} \mathrm{P}$ NMR of 14 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S24: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2}$ in CDCl_{3}.

Figure S25: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3}$ in CDCl_{3}.

	1	1	1	1	T	1	1	1	,		,	1	1		
50	300	250	200	150	100	50	0	-50	-100	-150	-200	-250	-300	-	3
							pp								

Figure S26: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{1 3}$ in CDCl_{3}.

Figure S27: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3}$ in CDCl_{3}.

Figure S28: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S29: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{1 4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S30: ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{1 4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure $\mathbf{S} 31$: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S32: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 5}$ in CDCl_{3}.

Figure S33: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{1 5}$ in CDCl_{3}.

| 150 | 140 | 130 | 120 | 110 | 100 | 90 80
 $\mathrm{f} 1(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure S34: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 5}$ in CDCl_{3}.

Figure S35: ${ }^{1} \mathrm{H}$ NMR of 16 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S36: ${ }^{31} \mathrm{P}$ NMR of 16 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S37: ${ }^{13} \mathrm{C}$ NMR of 16 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S38: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S39: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{1 7}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S40: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 7}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S41: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 8}$ in CDCl_{3}.

Figure S42: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{1 8}$ in CDCl_{3}.

Figure S43: ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{1 8}$ in CDCl_{3}.

Figure S44: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 8}$ in CDCl_{3}.

Figure S45: ${ }^{1} \mathrm{H}$ NMR of 19 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S46: ${ }^{31} \mathrm{P}$ NMR of 19 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S47: ${ }^{13} \mathrm{C}$ NMR of 19 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S48: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 0}$ in CDCl_{3}

Figure S49: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{2 0}$ in CDCl_{3}.

Figure S50: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 0}$ in CDCl_{3}.

Figure S51: ${ }^{1} \mathrm{H}$ NMR of 21 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S52: ${ }^{31} \mathrm{P}$ NMR of 21 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S53: ${ }^{13} \mathrm{C}$ NMR of 21 in $\mathrm{C}_{6} \mathrm{D}_{6}$.

Figure S54: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 2}$ in CDCl_{3}

Figure S55: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{2 2}$ in CDCl_{3}.

Figure S56: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 2}$ in CDCl_{3}.

Figure S57: ${ }^{1} \mathrm{H}$ NMR of 23 in CDCl_{3}.

Figure 58: ${ }^{31} \mathrm{P}$ NMR of 23 in CDCl_{3}.

Figure S59: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 3}$ in CDCl_{3}.

Figure S60: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 4}$ in CDCl_{3}.

Figure S61: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{2 4}$ in CDCl_{3}.

	1	1	1	1	1	1	1	1
0	150	100	50	0	-50	-100	-150	-2

Figure S62: ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{2 4}$ in CDCl_{3}.

Figure S63: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 4}$ in CDCl_{3}.

Figure S64: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 5}$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}$.

Figure S65: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{2 5}$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}$.

Figure S66: ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 5}$ in $\mathrm{CD}_{3} \mathrm{NO}_{2}$.

Figure S67: ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S68: ${ }^{31} \mathrm{P}$ NMR of $\mathbf{2 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S69: ${ }^{11} \mathrm{~B}$ NMR of $\mathbf{2 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S70: ${ }^{19} \mathrm{~F}$ NMR of $\mathbf{2 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S71: ${ }^{13} \mathrm{C}$ NMR of 26 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

