Supporting Information

Ir(III)-Catalyzed Decarbonylative Annulation of

Salicylaldehydes with Cyclohexane-1,3-diones

Qiao-Juan Jiang ${ }^{\text {a }}$, Yu-Tao Min ${ }^{\text {a }}$, Yan-Ping Liu ${ }^{a}$, Hua Li ${ }^{a}$, Jun-Ao Peng ${ }^{a}$, Cong-Jun Liu ${ }^{\text {a }}$, *
a College of Chemical Engineering and Food Technology, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China

* Corresponding author. Tel/Fax: +86-0371-68229079. Email address: 20103005@zzut.edu.cn.

Content

1. General information 3
2. General procedures for the synthesis of dihydrodibenzofuranones 3
3. Gram-scale synthesis of 3aa 4
4. Synthetic application 4
5. NMR and HRMS spectra 8

1. General information

Unless otherwise noted, commercially available reagents were used without further purification. All reactions were performed in oven-dried glassware. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker 400 MHz spectrometers and chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent ($\left.\mathrm{CDCl}_{3}, \delta 7.26 \mathrm{ppm}\right)$. Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Coupling constants were reported as a J value in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded at 101 MHz on 400 MHz instruments and chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent ($\left.\mathrm{CDCl}_{3}: \delta 77.16\right)$. Flash chromatography was performed on Lisure science EZ purification system using the Santai technologies silica gel cartridge. Thin layer chromatography (TLC) was performed using Jiangyou TLC silica gel plates HSG F254 and visualized using UV light.

2. General procedures for the synthesis of dihydrodibenzofuranones

To an oven-dried sealed tube was added salicylaldehyde 1 (1.0 equiv, 0.2 mmol), 1,3-cyclohexanedione 2 (2.0 equiv, 0.4 mmol), $\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}(4 \mathrm{mg}, 2.5$ $\mathrm{mol} \%), \mathrm{Phl}(\mathrm{OAc}) 2$ ($129 \mathrm{mg}, 0.4 \mathrm{mmol}$), KOAc ($39 \mathrm{mg}, 0.4 \mathrm{mmol}$), and HFIP $(2.0 \mathrm{~mL})$ under air atmosphere. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ on oil bath and stirred for 24 h . Then, the reaction mixture was cooled to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solvents were removed
under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EtOAc) to give the desired dihydrodibenzofuranones 3.

3. Gram-scale synthesis of 3aa

To an oven-dried sealed tube was added salicylaldehyde 1a ($610 \mathrm{mg}, 5 \mathrm{mmol}$), 1,3-cyclohexanedione 2a ($1.12 \mathrm{~g}, 10 \mathrm{mmol}$), $\left[\mathrm{Cp}^{*} \mid \mathrm{ICl} \mathrm{I}_{2}\right]_{2}(100 \mathrm{mg}, 2.5 \mathrm{~mol} \%$), $\mathrm{Phl}(\mathrm{OAc}) 2(3.2 \mathrm{~g}, 10 \mathrm{mmol})$, KOAc ($975 \mathrm{mg}, 10 \mathrm{mmol}$), and HFIP (50 mL) under air atmosphere. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ on oil bath and stirred for 24 h . Then, the reaction mixture was cooled to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The solvents were removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EtOAc) to give the desired dihydrodibenzofuranones 3aa (65%, 605 mg).

4. Synthetic application

To an oven-dried sealed tube was added 3 fa (1.0 equiv, $26.4 \mathrm{mg}, 0.1 \mathrm{mmol}$), benzeneboronic acid (2.0 equiv, $24.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc}) 2(0.7 \mathrm{mg}, 3$ $\mathrm{mol} \%), \mathrm{PPh}_{3}(1.6 \mathrm{mg}, 6 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(42 \mathrm{mg}, 0.3 \mathrm{mmol})$, and $\mathrm{PhCH}_{3}(0.5 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ and $\mathrm{EtOH}(0.5 \mathrm{~mL})$ under N_{2} atmosphere. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ on oil bath and stirred for 24 h . Then, the reaction
mixture was cooled to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solvents were removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EtOAc) to give the desired coupling product 4 ($62 \%, 16.3 \mathrm{mg}$).

8-Phenyl-3,4-dihydrodibenzo[b,d]furan-1(2H)-one (4): 72\% yield, white solid. m.p. 132-133 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61-7.58 (m, 2H), 7.54-7.50 (m, 2H), 7.44-7.38 (m, 1H), 3.13 (t, J $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.1,170.8,153.6,140.5,137.6,128.2,127.0,126.5,123.9,123.7$, 119.7, 116.1, 110.6, 37.3, 23.3, 21.9. HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}$ $(\mathrm{M}+\mathrm{Na})^{+}$263.1067, found 263.1057.

To an oven-dried sealed tube was added 3aa (1.0 equiv, 0.1 mmol), NaBH_{4} (3.0 equiv, 0.3 mmol), and $\mathrm{MeOH}(1 \mathrm{~mL})$ under air atmosphere. The reaction mixture was stirred for 12 h at room temperature. Then, the solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EtOAc) to give the desired coupling product 5 in 75\% yield.

1,2,3,4-Tetrahydrodibenzo[b,d]furan-1-ol (6) : white solid. m.p. 92-93 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) ס $7.69-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.23$ (m, 2H), $5.06(\mathrm{~s}, 1 \mathrm{H}), 3.08-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,154.5,127.2,123.6,122.7,119.1,115.6,111.0,63.4$, 32.6, 23.4, 18.8. HRMS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{2}{ }^{+}(\mathrm{M}+\mathrm{Na})^{+}$211.0729, found 211.0736 .

To an oven-dried sealed tube was added 3aa (1.0 equiv, 0.1 mmol), NaBH 3 CN (2.0 equiv, 0.2 mmol) and $\mathrm{HOAc}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under air atmosphere. Then, the reaction mixture was stirred at room temperature for 12 h . After the reaction was complete, the reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). The organic solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EtOAc) to give the desired coupling product 6 in 78% yield.

1,2,3,4-Tetrahydrodibenzo[b,d]furan (6): colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=6.0$ Hz, 2H), 2.68 (t, J = 6.0 Hz, 2H), $2.03-1.97$ (m, 2H), 1.93 - 1.88 (m, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,154.1,128.9,123.0,122.1$, 118.4, 112.9, 110.8, 23.5, 23.0, 22.7, 20.5. HRMS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$173.0916, found 173.0920.

To an oven-dried sealed tube was added 3aa (1.0 equiv, 0.1 mmol), I 12 (3.0 equiv, 0.3 mmol), and DMSO (1 mL) under N_{2} atmosphere. The reaction mixture was heated at $120{ }^{\circ} \mathrm{C}$ on oil bath and stirred for 24 h . Then, the reaction mixture was cooled to room temperature, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). The solvents were removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EtOAc) to give the desired coupling product 7 in 44% yield.

2-lodo-3,4-dihydrodibenzo[b,d]furan-1(2H)-one (7) : white solid. m.p. $190-191^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 7.96$ (d, J=6.8 Hz, 1H), 7.74 (d,
$J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 5.10-5.06(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.59(\mathrm{~m}, 2 \mathrm{H})$, $2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 194.8$, 171.4, 154.6, 126.2, 125.2, 123.4, 121.7, 115.5, 112.31, 62.2, 35.8, 32.5. HRMS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 312.9720$, found 312.9707.

To an oven-dried sealed tube was added 3aa (1.0 equiv, 0.1 mmol), NaOAc (2.0 equiv, 0.2 mmol), $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}(2.0$ equiv, 0.2 mmol), and $\mathrm{MeOH}(2 \mathrm{~mL})$ under N_{2} atmosphere. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ on oil bath and stirred for 1 h . Then, the reaction mixture was cooled to room temperature, diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solvents were removed under reduced pressure and the residue was purified by column chromatography on silica gel (PE/EtOAc) to give the desired coupling product 8 in 90\% yield.
(Z)-3,4-Dihydrodibenzo[b,d]furan-1(2H)-one oxime (8) : white solid. m.p. 215-216 ${ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 9.11$ (s, 1H), 8.13 - 7.92 (m, 1H), $7.71-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.31-1.98(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 160.9, 154.7, 153.6, 124.4, 124.3, 123.7, 121.8, 111.2, 111.0, 23.50, 22.3, 21.5. HRMS (ESI): Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+}$202.0863, found 202.0866 .
5. NMR and HRMS spectra
-8.046
-7.451
-7.307

3aa

3aa

!

3da

3fa

年

Nmみかoo	-	
	$\stackrel{-1}{0}$	
$\stackrel{\text { rirriojor }}{ }$	-	mimin
VVV		NH


```
471#614.698 RT: 3.50-3.97 AV: 85 NL: 1.08E8
*)
```

皮

3na

(

3ra

3ab

3ab

VNV

3ad

3ae

3af

-44.629
-40.611
-31.004

3ag

