Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1,3-Dipolar cycloaddition of cycloimmonium salts and 4-(trimethylsilyl)-3-butyn-2-one to access new functionalized indolizines with potential cytostatic activity

Andreea ZUBAŞ,^a Alina GHINET,^{a,b,c,*} Sergiu SHOVA^d and Elena BÎCU,^{a,*}

^{a.} 'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I, nr. 11, 700506 Iasi, Romania.

^b Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France.

^c Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France. ^d 'Petru Poni' Institute of Macromolecular Chemistry, Iasi, Romania.

* Correspondence: Corresponding authors. <u>alina.ghinet@junia.com</u>; <u>elena@uaic.ro</u>

Supplementary information

Table S1. Results of the in vitro human cancer cell growth inhibition for selected compounds

10e, 10e', 10g, 10i, 10k, 10l, 10m and 17m	2
¹ H and ¹³ C NMR spectra of compounds	4
Superimposition of full ¹ H NMR spectra of compounds 10a , 14a and 15a	47
One-dose full graphs obtained on NCI-60 cancer cell lines panel	48
Table S2. Bond distances (Å) and angles (°) for compounds 14a, 15a and 10n'	56
Pictures of dipolarophiles (Figure S2)	63

	Compound	10e	10e'	10g	10i	10k	10	10m	17m
	NSC	826668	826669	833245	831789	835650	833244	835652	835648
Cell type	Cell line				GI% ^{a, b}	(10 µM)			
Leukemia	CCRF-CEM	4	53	0	0	75	0	17	18
	HL-60(TB)	11	91	22	0	67	0	5	0
	K-562	5	81	14	0	81	18	16	37
	MOLT-4	8	72	18	0	77	0	33	40
	RPMI-8226	5	45	32	0	80	0	37	35
	SR	3	73	68	0	93	22	37	31
Non-Small	A549/ATCC	0	53	55	0	43	17	70	11
Cell Lung	EKVX	0	53	51	0	47	19	25	10
Cancer	HOP-62	0	48	65	9	41	60	26	0
	HOP-92	0	3	53	0	62	19	0	7
	NCI-H226	10	34	56	0	60	36	38	12
	NCI-H23	0	51	52	5	58	27	42	23
	NCI-H460	0	84	56	0	88	22	36	0
	NCI-H522	10	62	98	4	50	35	28	9
Colon	COLO 205	0	60	7	0	32	14	8	0
Cancer	HCC-2998	0	38	24	0	67	14	12	9
	HCT-116	5	82	80	0	93	27	55	31
	HCT-15	11	81	34	0	90	9	28	28
	HT29	0	84	28	0	67	19	43	43
	KM12	3	71	29	0	72	0	49	18
	SW-620	0	68	18	0	74	19	7	9
CNS	SF-268	0	39	77	3	51	26	21	6
Cancer	SF-295	0	92	69	0	64	45	0	0
	SF-539	2	65	76	0	67	34	68	7
	SNB-19	21	60	75	3	50	38	30	7
	SNB-75	35	94	98	3	17	55	0	0
	U251	3	66	68	0	64	28	73	12
Melanoma	LOX IMVI	3	66	45	7	-40 ^c	18	43	6
	MALME-3M	11	56	28	9	46	23	-6	0
	M14	4	84	15	0	64	0	35	5
	MDA-MB-435	3	-13	51	0	72	27	19	0
	SK-MEL-2	0	62	29	0	28	0	0	0
	SK-MEL-28	0	42	27	0	51	20	12	0
	SK-MEL-5	3	63	76	0	-36	14	42	19
	UACC-257	0	33	21	0	68	0	14	6
	UACC-62	30	83	37	0	76	29	5	13
Ovarian	IGROV1	0	58	19	57	63	7	4	6
Cancer	OVCAR-3	0	72	56	0	42	7	0	5
	OVCAR-4	10	20	50	0	48	40	52	29
	OVCAR-8	0	49	20	0	54	0	50	6
	NCI/ADR-RES	0	82	65	0	82	33	31	0
	SK-OV-3	0	23	71	0	0	17	0	21
Renal	786-0	9	49	55	5	56	30	48	0
Cancer	A498	-10	62	14	35	15	0	3	9
	ACHN	0	49	44	0	71	33	50	0

Table S1. Results of the *in vitro* human cancer cell growth inhibition for selected compounds **10e**, **10e**, **10g**, **10i**,**10k**, **10l**, **10m** and **17m**.

	CAKI-1	16	66	61	7	65	38	45	0	
	RXF 393	19	41	92	0	58	5	14	12	
	SN12C	19	58	45	0	58	32	22	14	
	UO-31	24	56	32	10	65	10	41	17	
Prostate	PC-3	10	44	17	0	72	12	20	12	
Cancer										
Breast	MCF7	17	85	65	5	74	23	36	31	
Cancer	MDA-MB-	24	45	25	4	54	29	70	3	
	231/ATCC									
	HS 578T	9	41	57	5	46	26	37	7	
	BT-549	0	47	75	0	84	7	22	6	
	T-47D	18	62	51	0	79	16	25	70	
	MDA-MB-468	18	-3	40	0	97	13	50	18	

^a Data obtained from NCI's *in vitro* 60-cell one dose screen at 10 μ M concentration.

 $^{\rm b}$ GI% is the percentage of growth inhibition of tumor cells.

^c A value of -x means x% cancer cells lethality of preexisting cells (cytotoxic effect).

NMR Spectra of compounds

¹H NMR (400 MHz, CDCl₃) -10a

¹³C NMR (100 MHz, CDCl₃)

¹³C-DEPT NMR (100 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -14a

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -15a

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)-10b

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹H NMR (500 MHz, CDCl₃) -16b

¹³C NMR (125 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -10c

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -14c

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -10d

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) -10e

¹³C NMR (100 MHz, CDCl₃)

¹³C-DEPT NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) -10e'

¹³C NMR (100 MHz, CDCl₃)

¹³C-DEPT NMR (100 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -10f

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -16f

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C-DEPT NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) -14g

27

¹H NMR (500 MHz, CDCl₃) -10h

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -14h

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -10i

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) -10j

¹³C NMR (100 MHz, CDCl₃)

¹³C-DEPT NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) -10j'

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -10k

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C-DEPT NMR (100 MHz, CDCl₃)

¹H NMR (500 MHz, DMSO-d₆) -10m

¹³C-DEPT NMR (125 MHz, DMSO-d₆)

¹H NMR (500 MHz, CDCl₃) -14m

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃) -17m

¹³C NMR (125 MHz, CDCl₃)

¹³C-DEPT NMR (125 MHz, CDCl₃)

140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹³C NMR (100 MHz, CDCl₃)

46

¹³C-DEPT NMR (100 MHz, CDCl₃)

¹H NMR (500 MHz, DMSO-d₆) -10n'

¹³C NMR (125 MHz, DMSO-d₆)

¹³C-DEPT NMR (125 MHz, DMSO-d₆)

¹H NMR (400 MHz, DMSO-d₆) -13c

¹³C NMR (100 MHz, DMSO-d₆)

¹H NMR (400 MHz, DMSO-d₆) -13h

¹³C NMR (100 MHz, DMSO-d₆)

¹H NMR (400 MHz, DMSO-d₆) -13m

¹³C NMR (100 MHz, DMSO-d₆)

Figure S1. Superimposition of ¹H NMR spectra (CDCl₃) of compounds 10a, 14a and 15a

By superimposing the ¹H NMR spectra of compounds **10a**, **14a** and **15a** (Figure S1), some characteristics are highlighted also in the aliphatic zone: the characteristic signal of the 9 protons from the trimethylsilyl (CH₃)₃Si group (for structures **14a** and **15a**) and of the 3 protons of the acetyl function, highlighting the fact that in compound **15a**, which contains the acetyl group in position 2, the chemical shift is approximately 1.9 ppm, while in the derivatives with the acetyl group in position 1 (in compounds **10a** and **14a**) the signal is deshielded ($\delta \sim 2.5$ ppm), as a result of the formation of a hydrogen bond (O---Hindoliz-8).

One-dose full graphs obtained on NCI-60 cancer cell lines panel

Compound 10e

Developmental Therapeutics Program		NSC: D-826668 / 1	Conc: 1.00E-5 Molar	Test Date: Nov 02, 2020	
One Dose Mean Graph		Experiment ID: 2011	OS61	Report Date: Nov 26, 2020	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent	
Panel/Cell Line Leukemia CCRF-CEM HL-80(TB) K-562 MOLT-4 RPMI-8228 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-82 HOP-92 NCI-H226 NCI-H227 NCI-H228 NCI-H23 NCI-H23 NCI-H322M NCI-H322 Colon Cancer COLO 205 HCC-2988 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-285 SF-286 SF-286 SF-287 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-62 OvcaR-3 OVCAR-4	Growth Percent 96.08 88.86 94.63 92.45 92.45 92.45 92.45 92.45 92.45 90.53 109.68 89.92 101.47 98.55 101.67 90.24 109.99 104.95 95.09 95.09 95.09 96.53 104.21 105.70 108.53 96.73 97.47 78.66 64.55 96.71 96.73 89.08 96.08 97.34 98.08 96.08 97.34 98.08 96.08 97.34 98.08 96.08 97.34 98.08 96.08 97.34 98.08 96.73 89.08 96.73 89.08 96.73 89.08 96.74 97.47 78.66 64.55 96.71 96.73 89.08 97.34 98.90 103.21 97.46 97.59 115.11 90.83 95.59 105.78 97.94 108.56 90.99 -10.43 97.92 84.46 81.09 80.90 108.15 75.62 90.21 107.16	Mean Growth	Percent - Growth Perc	ent	
MCF7 MDA-MB-231/ATCC HS 578T BT-540 T-47D MDA-MB-468	82.65 76.10 90.71 104.22 81.82 81.81		-		
Mean Delta Range	93.23 103.66 125.54			➡	
	150	100 50	0 -50	-100 -150	

Compound 10e'

Developmental Therapeutics Program		NSC: D-826669 / 1	Test Date: Nov 02, 2020		
One Dose Me	an Graph	Experiment ID: 2011	OS61	Report Date: Nov 26, 2020	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Per	cent	
Leukemia	47.07		_		
HI-60(TB)	8.80				
K-562	19.22				
MOLT-4	28.48				
SR	26.90				
Non-Small Cell Lung Cancer					
A549/ATCC	46.69				
HOP-82	52.30				
HOP-92	96.97				
NCI-H226	66.33				
NCI-H23 NCI-H322M	66 01				
NCI-H460	15.88				
NCI-H522	38.41				
COLO 205	39.85				
HCC-2998	61.63				
HCT-116	18.44				
HT29	15.61				
KM12	28.59				
SW-620	32.44				
SF-268	61.27				
SF-295	7.71				
SNB-10	40.02		- E I		
SNB-75	6.02				
U251	33.96				
LOX IMVI	34.46		-		
MALME-3M	43.93				
M14	16.08				
SK-MEL-2	37.54				
SK-MEL-28	58.07				
SK-MEL-5	36.74				
UACC-62	17.16				
Ovarian Cancer					
OVCAR-3	41.94				
OVCAR-4	79.73				
OVCAR-5	59.46				
NCI/ADR-RES	18.38				
SK-OV-3	77.42				
Renal Cancer 798-0	50.52				
A498	38.29				
ACHN	51.30				
RXF 393	58.61				
SN12C	42.39				
TK-10	76.31				
Prostate Cancer	43.80				
PC-3	55.60				
DU-140 Breast Cancer	00.94				
MCF7	14.79				
MDA-MB-231/ATCC	55.23				
BT-549	53.13		1000		
T-47D	37.88				
MDA-MB-468	-2.89				
Mean	41.02				
Delta	53.71				
Kange	109.00	8 - C			
	150	100 50	0 -50	-100 -150	

Compound 10g

Developmental Therapeutics Program		NSC: D-833245 / 1 Conc: 1.00E-5 Molar		Test Date: Dec 13, 2021	
One Dose Mea	an Graph	Experiment ID: 2112	Experiment ID: 2112OS29		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent	
Leukemia CCRF-CEM HL-80(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-82 HOP-92 NCI-H226 NCI-H226 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-H228 NCI-H220 Colon Cancer COLO 205 HCC-2908 HCT-116 HCT-116	103.50 78.04 86.37 82.34 67.69 31.78 45.35 49.36 34.49 46.85 44.39 47.70 78.85 45.43 2.30 92.71 76.09 19.64 65.87				
HT29 KM12 SW-620 CNS Cancer SF-288 SF-295 SF-539 SNB-19 SNB-19 SNB-75 U251 Melanoma	72.46 71.16 82.19 23.46 31.01 23.79 24.77 2.27 32.38				
LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-257 UACC-257 UACC-62 Ovarian Cancer	54.85 72.14 84.91 49.11 70.95 72.89 33.61 79.20 63.37	3			
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer 70 0	80.83 43.93 49.85 80.49 18.36 35.03 29.13		₹		
A498 ACHN CAKI-1 RXF 383 SN12C TK-10 UO-31 Prostate Cancer	40.46 86.06 56.64 38.56 8.06 55.02 57.38 67.55				
PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	82.94 66.89 35.23 75.33 43.40 25.40 48.56 59.62				
Mean Delta Range	53.85 51.58 101.23				
	150	100 50	0 -50	-100 -150	

Compound 10i

Developmental Therapeutics Program		NSC: D-831789 / 1 Conc: 1.00E-5 Molar		Test Date: Jul 26, 2021	
One Dose Mean Graph		Experiment ID: 2107	OS63	Report Date: Sep 06, 2021	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent	
Leukemia CCFF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H226 NCI-H227 NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H32M NCI-H32M NCI-H32M NCI-H32M NCI-H32M NCI-H32M NCI-S2 Colon Cancer COLO 205 HCC-2988 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-286 SF-285 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK	106.04 107.66 102.03 117.67 109.45 108.63 103.82 113.43 90.80 106.21 99.93 95.02 92.35 92.68 96.16 123.48 108.56 96.16 123.48 108.56 97.65 96.94 107.70 108.85 97.25 96.65 102.13 93.00 90.73 116.92 108.50 102.85 102.82 90.73 103.81 96.24 43.40 103.95 108.50 102.32 99.13 107.36 95.13 65.37 90.43 90.323 106.45 100.52				
	150	100 50	0 -50	-100 -150	

Compound 10k

Developmental Therapeutics Program		NSC: D-835650 / 1	Conc: 1.00E-5 Molar	Test Date: Mar 07, 2022
One Dose Me	an Graph	Experiment ID: 2203	OS82	Report Date: Mar 28, 2022
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Leukemia CCRF-CEM HL-60(TB) K-582 MOLT-4 RPMI-8228 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-82 HOP-92 NCI-H228 NCI-H228 NCI-H228 NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M NCI-H322M Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-288 SF-289 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-5 UACC-82 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-4 OVCAR-5 OVCAR-5 OVCAR-5 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0 A408 ACHN CAKI-1 SN12C TK-10 UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-470 MDA-MB-468 Mean Delta	24.81 33.30 18.66 22.63 19.81 6.72 56.88 53.09 58.60 38.06 38.06 32.71 12.33 49.61 67.66 32.71 7.08 10.54 32.70 28.27 25.60 49.42 38.46 32.75 49.79 83.08 36.10 -39.98 53.92 36.05 27.99 72.48 48.69 -36.26 31.61 23.83 37.07 58.02 51.71 6.77 45.86 18.36 19.85 44.48 85.39 29.17 56.65 26.49 46.37 53.68 15.99 20.85 24.91 35.10 28.27 56.65 26.49 46.37 53.68 15.99 20.83 3.44 37.95 77.93 25.77 25.60 26.49 20.83 3.44 37.95 37.95 37.95 37.95 37.95 37.95 37.95 37.95 37.95 37.95 37.95 38.95			
Deita Range	139.83 150	100 50	0 -50	-100 -150

Compound 10l

Developmental Therapeutics Program		NSC: D-833244 / 1	Conc: 1.00E-5 Molar	Test Date: Dec 13, 2021	
One Dose Mea	an Graph	Experiment ID: 2112	OS29	Report Date: Feb 17, 2022	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent	
Leukemia	111.00				
HL-60(TB)	99.82				
K-562	82.30				
MOLT-4	103.86				
RPMI-8226	104.13				
Non-Small Cell Lung Cancer	11.05				
A549/ATCC	82.92				
EKVX	81.28		17 X X		
HOP-62	40.19				
NCI-H226	64.25				
NCI-H23	72.52				
NCI-H322M	89.23				
NCI-H460	78.30				
Colon Cancer	04.04				
COLO 205	86.02		-		
HCC-2998	86.07				
HCT-110	01 20				
HT29	70.53				
KM12	98.15				
SW-620	80.75				
SF-268	74.25				
SF-295	55.39				
SF-539	76.00				
SNB-75	45.27				
U251	71.65				
Melanoma	01.07				
MALME-3M	77 10		1 m m		
M14	104.32				
MDA-MB-435	72.56		_		
SK-MEL-2 SK-MEL-28	80.41				
SK-MEL-5	86.00		-		
UACC-257	99.57				
Ovarian Cancer	/1.14				
IGROV1	92.65				
OVCAR-3	92.55				
OVCAR-4 OVCAR-5	97.67				
OVCAR-8	63.84				
NCI/ADR-RES	66.85				
Renal Cancer	82.83				
786-0	69.62		_		
A498	119.19				
CAKI-1	61 70				
RXF 393	94.88		_		
SN12C	68.15				
UO-31	90.07				
Prostate Cancer	00.01				
PC-3	87.75				
Breast Cancer	80.07				
MCF7	76.96				
MDA-MB-231/ATCC	70.99				
HS 3/81 BT-540	93.30		_		
T-47D	83.74				
MDA-MB-468	87.20				
Mean	81.20				
Delta	41.01	2			
Range	79.00				
		5	1		
	150	100 50	0 -50	-100 -150	

Compound 10m

Compound 17m

Developmental Therapeutics Program		NSC: D-835648 / 1 Conc: 1.00E-5 Molar		Test Date: Mar 07, 2022	
One Dose Me	an Graph	Experiment ID: 2203	Experiment ID: 2203OS82		
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent	
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-62 HOP-62 NCI-H23 NCI-H23 NCI-H23 NCI-H23 NCI-H322M NCI-H23 NCI-H322M NCI-H322M NCI-H322 Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-288 SF-285 SF-539 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-MEL-2 SK-MEL-28 SK-MEL-2 SK-MEL-28 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-2 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer PC-3 DU-145 Breast Cancer PC-3 DU-145 Breast Cancer MDA-MB-231/ATCC HS-549 T-47D MDA-MB-488 MEan Delta Pance	82.29 100.93 63.43 60.06 65.15 68.82 88.66 90.15 106.33 93.06 88.17 77.21 102.07 102.08 91.33 115.29 90.53 69.42 72.36 56.05 81.65 91.06 94.22 98.24 93.34 92.57 105.64 87.54 93.97 105.64 87.54 93.97 105.64 87.54 93.97 105.64 87.54 93.96 94.65 93.68 94.75 70.88 93.65 93.68 94.75 70.88 93.65 93.68 94.75 70.88 93.65 93.68 94.75 70.88 93.65 93.68 94.75 70.88 93.65 93.68 94.75 70.88 93.65 93.68 94.75 70.88 93.68 94.75 70.88 93.68 94.75 70.88 93.68 94.75 70.88 93.68 94.75 70.88 93.68 94.75 70.88 93.68 93.68 94.72 78.70 115.00 90.70 147.32 106.50 87.56 86.12 128.98 83.47 88.42 99.63 69.25 97.13 93.21 94.61 30.47 82.45 90.39 59.92				
кануе	150	100 50	0 -50	-100 -150	
		36311 133			

Table S2. Bond distances (Å) and angles (°).

Compound 14a.

molecule

	A	В	С				
Br1-C4	1.894(7)		1.897(7)		1.901(7)		
Si1-C9	1.892(7	7)	1.893(7	7)	1.887(7	7)	
Si1-C10	1.865(6	5)	1.877(6	5)	1.848(8	3)	
Si1-C11	1.848(7	7)	1.844(7	7)	1.871(7	7)	
Si1-C12	1.857(8	3)	1.864(7	7)	1.837(8	3)	
01-C7	1.215(8	3)	1.229(8	3)	1.226(8	3)	
O2-C15	1.219(8	3)	1.222(8	3)	1.222(8	3)	
N1-C8	1.376(8	3)	1.389(8	3)	1.387(8	3)	
N1-C14	1.415(8	3)	1.402(8	3)	1.404(8	3)	
N1-C20	1.405(9	9)	1.380(8	3)	1.385(9	9)	
N2-C21	1.151(9	9)	1.142(8	3)	1.138(9	9)	
C1-C2	1.386(9))	1.395(9	9)	1.392(1	LO)	
C1-C6	1.381(1	LO)	1.369(1	LO)	1.380(1	LO)	
C1-C7	1.500(9	9)	1.473(9	9)	1.479(9	9)	
C2-C3	1.383(1	LO)	1.381(1	LO	1.383(1	LO)	
C3-C4	1.387(1	LO)	1.359(1	LO)	1.384(1	LO)	
C4-C5	1.388(9	9)	1.389(1	LO)	1.364(1	LO)	
C5-C6	1.385(1	LO)	1.382(1	LO)	1.393(1	LO)	
C7-C8	1.502(9	9)	1.510(9	9)	1.480(9	9)	
C8-C9	1.393(9	9)	1.374(9	9)	1.388(9	9)	
C9-C13	1.432(9	9)	1.447(8	3)	1.435(9	9)	
C13-C1	4	1.384(9	9)	1.397(9	9)	1.398(9)	
C13-C1	5	1.470(1	LO)	1.467(9	9)	1.474(10)	
C14-C1	7	1.417(9	9)	1.406(8	3)	1.421(9)	
C15-C1	6	1.504(9	9)	1.496(8	3)	1.501(10)	
C17-C18 1.391(1		1.391(1	1.342(9		9) 1.358(10)		

C18-C19	1.415(10)	1.431(9)	1.436(9)
C18-C21	1.439(10)	1.461(10)	1.444(10)
C19-C20	1.327(9)	1.350(9)	1.340(9)
C10-Si1-C9	110.2(3)	108.2(3)	110.8(3)
C11-Si1-C9	112.6(3)	112.5(3)	109.2(3)
C11-Si1-C10	107.3(3)	107.6(3)	106.3(4)
C11-Si1-C12	112.1(4)	112.6(4)	108.4(4)
C12-Si1-C9	110.0(3)	110.4(3)	112.1(3)
C12-Si1-C10	104.3(3)	105.2(3)	109.9(4)
C8-N1-C14	109.0(6)	108.1(6)	109.5(6)
C8-N1-C20	129.8(6)	129.4(6)	129.0(6)
C20-N1-C14	121.1(6)	122.5(5)	121.5(6)
C2-C1-C7	119.6(7)	119.7(7)	120.1(7)
C6-C1-C2	119.7(7)	118.0(7)	119.3(7)
C6-C1-C7	120.7(7)	122.3(7)	120.5(7)
C3-C2-C1	121.2(7)	120.8(7)	119.9(8)
C2-C3-C4	118.0(7)	119.7(7)	119.6(8)
C3-C4-Br1	119.4(6)	120.3(6)	119.1(6)
C3-C4-C5	121.9(7)	121.3(7)	121.3(7)
C5-C4-Br1	118.7(6)	118.4(6)	119.6(6)
C6-C5-C4	118.7(7)	118.0(7)	118.9(7)
C1-C6-C5	120.5(7)	122.3(7)	120.8(8)
01-C7-C1	122.2(7)	122.8(6)	121.2(6)
01-C7-C8	120.0(7)	117.7(7)	119.1(6)
C1-C7-C8	117.8(7)	119.5(6)	119.6(6)
N1-C8-C7	121.9(6)	119.0(6)	120.9(6)
N1-C8-C9	109.3(6)	110.4(6)	109.2(6)
C9-C8-C7	128.8(6)	130.6(6)	129.9(7)
C8-C9-Si1	125.9(5)	127.0(5)	125.9(5)
C8-C9-C13	105.9(6)	105.8(6)	105.9(6)

C13-C9-Si1	127.2(6)	126.1(5)	127.2(6)
C9-C13-C15	122.6(6)	122.8(6)	123.6(7)
C14-C13-C9	109.3(6)	108.2(6)	109.4(7)
C14-C13-C15	127.9(6)	129.0(6)	126.8(6)
N1-C14-C17	117.5(7)	116.6(6)	117.1(6)
C13-C14-N1	106.4(6)	107.4(5)	106.1(6)
C13-C14-C17	136.0(7)	135.9(6)	136.8(7)
O2-C15-C13	119.1(7)	119.0(6)	119.4(7)
O2-C15-C16	120.0(7)	119.7(7)	120.6(7)
C13-C15-C16	120.8(6)	121.3(6)	120.0(7)
C18-C17-C14	119.2(7)	120.6(6)	120.1(7)
C17-C18-C19	121.3(7)	121.7(6)	121.5(7)
C17-C18-C21	119.7(7)	121.7(6)	121.1(7)
C19-C18-C21	119.0(7)	116.7(6)	117.4(7)
C20-C19-C18	119.8(7)	118.3(7)	118.1(7)
C19-C20-N1	120.8(7)	120.1(6)	121.7(7)
N2-C21-C18	179.9(11)	176.9(9)	177.4(9

Compound 15a.

- Br1-C4 1.897(3)
- Si1-C12 1.883(3)
- Si1-C13 1.853(3)
- Si1-C14 1.859(3)
- Si1-C15 1.870(3)
- 01-C7 1.218(3)
- O2-C10 1.206(3)
- N1-C8 1.385(3)
- N1-C16 1.403(3)
- N1-C20 1.383(3)
- N2-C21 1.146(4)
- C1-C2 1.391(4)

C1-C6	1.379(4	.)
C1-C7	1.499(4)
C2-C3	1.390(4	
C3-C4	1.367(5)
C4-C5	1.376(5)
C5-C6	1.390(4	.)
C7-C8	1.461(4	.)
C8-C9	1.404(4	.)
C9-C10	1.504(4	.)
C9-C12	1.410(3)
C10-C1	1	1.492(4)
C12-C1	6	1.390(4)
C16-C1	7	1.416(3)
C17-C18	8	1.360(4)
C18-C19	Э	1.422(4)
C18-C2	1	1.437(4)
C19-C2	C	1.345(4)
C13-Si1	-C12	109.65(13)
C13-Si1	-C14	111.30(16)
C13-Si1	-C15	107.50(15)
C14-Si1	-C12	108.48(14)
C14-Si1	-C15	108.95(16)
C15-Si1	-C12	110.97(14)
C8-N1-0	216	108.7(2)
C20-N1	-C8	129.2(2)
C20-N1	-C16	121.9(2)
C2-C1-C	7	117.8(3)
C6-C1-C	2	119.3(3)
C6-C1-C	27	122.9(3)
C3-C2-C	1	120.1(3)

C4-C3-C2	119.3(3)
C3-C4-Br1	118.1(2)
C3-C4-C5	121.8(3)
C5-C4-Br1	120.1(3)
C4-C5-C6	118.6(3)
C1-C6-C5	120.9(3)
01-C7-C1	120.4(3)
01-C7-C8	121.8(3)
C8-C7-C1	117.8(3)
N1-C8-C7	121.2(2)
N1-C8-C9	106.3(2)
C9-C8-C7	132.5(2)
C8-C9-C10	127.4(2)
C8-C9-C12	110.2(2)
C12-C9-C10	122.4(2)
O2-C10-C9	118.5(3)
O2-C10-C11	122.2(3)
C11-C10-C9	119.2(3)
C9-C12-Si1	126.8(2)
C16-C12-Si1	127.77(18)
C16-C12-C9	105.5(2)
N1-C16-C17	116.9(2)
C12-C16-N1	109.4(2)
C12-C16-C17	133.7(2)
C18-C17-C16	120.8(3)
C17-C18-C19	120.4(2)
C17-C18-C21	119.7(3)
C19-C18-C21	119.8(3)
C20-C19-C18	119.6(3)
C19-C20-N1	120.4(3)
N2-C21-C18	178.4(4)

Compound 10n'

Br1-C4 1.892(6)

Br2-C15

1.891(6)

O1-C11 1.229(6	5)	
N1-C9 1.410(6	5)	
N1-C10 1.398(6)		
N1-C18 1.358(6)		
N2-C22 1.140(8	8)	
C1-C2 1.391(7	7)	
C1-C6 1.392(7)	
C1-C7 1.471(7	7)	
C2-C3 1.385(7	7)	
C3-C4 1.381(7	7)	
C4-C5 1.366(2	7)	
C5-C6 1.370(7)	
C7-C8 1.399(7	7)	
C7-C10 1.393(7)	
C8-C9 1.380(7	7)	
C9-C21 1.405(7)	
C10-C11	1.463(7)	
C11-C12	1.483(7)	
C12-C13	1.383(7)	
C12-C17	1.384(7)	
C13-C14	1.376(7)	
C14-C15	1.376(7)	
C15-C16	1.384(7)	
C16-C17	1.379(7)	
C18-C19	1.360(7)	
C19-C20	1.425(8)	
C19-C22	1.439(9)	

C20-C21	1.353(8)
C10-N1-C9	108.9(5)
C18-N1-C9	121.7(5)
C18-N1-C10	129.3(5)
C2-C1-C6	117.9(5)
C2-C1-C7	121.0(5)
C6-C1-C7	121.1(5)
C3-C2-C1	120.6(6)
C4-C3-C2	119.6(6)
C3-C4-Br1	120.1(5)
C5-C4-Br1	119.3(5)
C5-C4-C3	120.6(6)
C4-C5-C6	119.7(5)
C5-C6-C1	121.6(5)
C8-C7-C1	123.6(5)
C10-C7-C1	127.1(5)
C10-C7-C8	108.4(5)
C9-C8-C7	108.8(5)
C8-C9-N1	106.9(5)
C8-C9-C21	135.5(6)
C21-C9-N1	117.5(6)
N1-C10-C11	119.8(5)
C7-C10-N1	106.9(5)
C7-C10-C11	133.2(6)
O1-C11-C10	120.3(5)
01-C11-C12	119.8(5)
C10-C11-C12	119.9(5)
C13-C12-C11	123.5(5)
C13-C12-C17	118.8(5)
C17-C12-C11	117.4(5)

- C15-C14-C13 119.5(5)
- C14-C15-Br2 119.8(5)
- C14-C15-C16 121.0(6)
- C16-C15-Br2 119.1(4)
- C17-C16-C15 118.7(5)
- C16-C17-C12 121.2(5)
- N1-C18-C19 119.6(6)
- C18-C19-C20 120.8(6)
- C18-C19-C22 116.8(6)
- C20-C19-C22 122.3(6)
- C21-C20-C19 118.9(6)
- C20-C21-C9 121.3(6)
- N2-C22-C19 178.6(8)

Pictures of dipolarophiles

Figure S2. Picture of commercial dipolarophiles: 4-(trimethylsilyl)-3-butyn-2-one **1** (left) and 3-butyn-2-one (fresh batch (middle) and old batch (right)).