Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information for

Efficient synthesis of pyrrolo[1,2-α]quinoxalines mediated by ethyl 2-(4-nitrophenyl)azocarboxylate

Da Hye Lee, Ga Young Kim, and Jinho Kim*

Department of Chemistry, and Research Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.

jinho@inu.ac.kr

1.	General considerations	S 1
2.	Preparation of oxidants and starting materials	S2
3.	Optimization of azo-mediated oxidative cyclization	S3
4.	General procedure of 1d-mediated oxidative cyclization	S4
5.	Procedure of 1d-mediated oxidative cyclization on large scale	S17
6.	Optimization for synthesis of quinazolinones	S18
7.	References	S19
8.	¹ H, ¹³ C, and ¹⁹ F NMR spectra	S21

Table of Contents

1. General considerations

All commercially available compounds and solvents were purchased and used as received, unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates. Visualization on TLC was achieved by the use of UV light (254 nm) and treatment with phosphomolybdic acid stain followed by heating. Flash chromatography was performed using silica gel (particle size 40–63 μ m, 230–400 mesh). ¹H and ¹³C NMR spectra were recorded on 400 MHz NMR (400 MHz for ¹H, 101 MHz for ¹³C). Chemical shift values are given in parts per million relative to internal TMS (0.00 ppm for ¹H) or CDCl₃ (77.26 ppm for ¹³C). The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = double of doublet, dt = double of triplet, td = triple of doublet. Coupling constants, *J*, were reported in hertz unit (Hz). High-resolution mass spectra were obtained from the Korea Basic Science Institute (Daegu) by using EI method and magnetic sector mass analyzer.

2. Preparation of oxidants and starting materials

Preparation of oxidants

All azo compounds were prepared according to the known procedure.¹

Preparation of 2-(1H-pyrrol-1-yl)anilines

The 2-(1*H*-pyrrol-1-yl)anilines for 11, 12, 14, 15, 18, 20, and 21 were prepare by Cu-catalyzed C-N cross coupling reaction.²

The 2-(1*H*-pyrrol-1-yl)anilines for 10, 13, 16, 17, and 19 were prepare by cyclization followed by reduction.³

The characterizations of newly synthesized 2-(1H-pyrrol-1-yl)anilines were provided below.

4-methyl-2-(1*H***-pyrrol-1-yl)aniline** (for **11**); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 6.96 (d, *J* = 6.6 Hz, 2H), 6.81 (t, *J* = 2.1 Hz, 2H), 6.71 (d, *J* = 8.7 Hz, 1H), 6.31 (t, *J* = 2.0 Hz, 2H), 3.57 (s, 2H), 2.25 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 129.3, 128.2, 127.8, 127.7, 121.9, 116.4, 109.5, 20.5; HRMS (EI) m/z calcd. For C₁₁H₁₂N₂ [M]⁺: 172.1000, found 172.0998.

methyl 3-amino-4-(1*H*-pyrrol-1-yl)benzoate (for 17); pale solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 1.7 Hz, 1H), 7.45 (dd, J = 8.1, 1.8 Hz, 1H), 7.19 (d, J = 8.1 Hz, 1H), 6.87 (t, J = 2.1 Hz, 2H), 6.37 (t, J = 2.1 Hz, 2H), 3.91 (s, 3H), 3.88 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 141.8, 131.1, 130.0, 126.8, 121.4, 119.7, 117.5, 110.2, 52.4; HRMS (EI) m/z calcd. For C₁₂H₁₂N₂O₂ [M]⁺: 216.0899, found 216.0900.

Preparation of 3-(4,5-diphenyloxazol-2-yl)propanal (for 53)

3-(4,5-diphenyloxazol-2-yl)propanal was prepared by the reduction of oxaprozin with LiAlH₄ followed by PCC oxidation.⁴

Preparation of 2-amino-N-methylbenzamides

2-amino-N-methylbenzamides were prepared according to the known procedure.5

3. Optimization of azo-mediated oxidative cyclization

A 10 mL flame-dried test tube (O.D. 15 mm), which was equipped with a magnetic stir bar and charged with 2-(1*H*-pyrrol-1-yl)aniline **6** (1.0 mmol), ethyl 2-phenylazocarboxylates **1** (1.0 equiv., 1.0 mmol), was evacuated and backfilled with nitrogen (this process was repeated three times). After 1.0 mL of solvent was added, 4-methylbenzaldehyde **7** (1.2 equiv, 1.2 mmol), acetic acid (0.1 equiv, 0.1 mmol), and solvent (1.0 mL) were added in sequence. The reaction mixture was stirred at room temperature (stirring rate: 1500 rpm). The reaction mixture was concentrated on rotary evaporator. The crude mixture was dissolved in CHCl₃ (30 mL) and filtered through a pad of silica (to separate hydrazine byproduct). The silica pad was washed with additional CHCl₃ (30 mL). The reaction mixture was concentrated on rotary evaporator. The ¹H NMR yield of the desired product was determined by integration using an internal standard (1,1,2,2-tetrachloroethane).

entry	1	aalvaat	time (h) yield $(\%)^a$	(%) <i>a</i>	
	1	sorvent	time (n)	8	9
1	1 a	МеОН	0.5	32	63
2	1b	МеОН	0.5	52	33
3	1c	МеОН	0.5	88	12
4	1d	МеОН	0.5	95	5
5	1d	toluene	0.5	55	3
6	1d	DMF	0.5	21	0
7	1d	CH ₃ CN	0.5	12	0
8	1d	DMSO	0.5	0	0
9	1d	THF	0.5	0	0
10	1d	МеОН	1	99	0
11 ^b	1d	МеОН	1	99	0
12	-	МеОН	1	0	99
13 ^b	-	МеОН	1	0	99
14 ^c	1d	МеОН	1	0	0

15 ^d	1d	MeOH	1	90	0
16 ^e	1d	MeOH	1	99	0
17 ^f	1d	MeOH	1	99	0

^{*a*}Yield of **3a** was determined by ¹H NMR spectroscopy with 1,1,2,2-tetrachloroethane as internal standard. ^{*b*}Under air ^{*c*}No AcOH was used. ^{*d*}No light. ^{*e*}The use of HCl instead of AcOH. ^{*f*}The use of TFA instead of AcOH

4. General procedure of 1d-mediated oxidative cyclization

A 10 mL flame-dried test tube (O.D. 15 mm), which was equipped with a magnetic stir bar and charged with 2-(1*H*-pyrrol-1-yl)aniline (1.0 mmol), ethyl 2-(4-nitrophenyl)azocarboxylate **1d** (1.0 equiv., 1.0 mmol), was evacuated and backfilled with nitrogen (this process was repeated three times). After 1.0 mL of methanol was added, aldehyde (1.2 equiv, 1.2 mmol), acetic acid (0.1 equiv, 0.1 mmol), and methanol (1.0 mL) were added in sequence. The reaction mixture was stirred at room temperature for 1 h (stirring rate: 1500 rpm). The reaction mixture was concentrated on rotary evaporator. The crude mixture was dissolved in CHCl₃ (30 mL) and filtered through a pad of silica (to separate hydrazine byproduct). The silica pad was washed with additional CHCl₃ (30 mL). The reaction mixture was concentrated on rotary evaporator. The residue was purified by column chromatography (silica gel) to provide pyrrolo[1,2- α]quinoxalines.

The filtered hydrazine on the pad of silica was washed with ethyl acetate several times. The filtrate was evacuated on rotovap to obtain hydrazine byproduct. The obtained hydrazine was pure enough to use recycling without further purification.

9-methyl-4-phenylpyrrolo[**1**,**2**-*α*]**quinoxaline**⁶ (**10**); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 1.8 Hz, 1H), 7.95 (ddd, *J* = 20.7, 7.6, 1.8 Hz, 3H), 7.57 – 7.47 (m, 3H), 7.40 – 7.27 (m, 2H), 6.99 (d, *J* = 3.4 Hz, 1H), 6.89 – 6.80 (m, 1H), 2.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.3, 138.6, 138.1, 131.1, 129.8, 128.9, 128.8, 128.7, 127.6, 127.0, 125.4, 124.8, 120.4, 113.4, 108.3, 24.1.

8-methyl-4-phenylpyrrolo[1,2-α]quinoxaline⁶ (11); pale-yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.88 (d, *J* = 1.5 Hz, 1H), 7.59

(s, 1H), 7.57 – 7.49 (m, 3H), 7.27 – 7.21 (m, 1H), 6.99 – 6.93 (m, 1H), 6.87 – 6.80 (m, 1H), 2.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.5, 138.7, 138.0, 134.4, 130.0, 129.7, 128.7, 128.7, 127.0, 126.6, 125.5, 114.3, 113.9, 113.8, 108.4, 21.9.

8-chloro-4-phenylpyrrolo[1,2-α]quinoxaline⁶ (12); pale-yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 4.2 Hz, 1H), 7.95 (dd, *J* = 9.2, 5.3 Hz, 2H), 7.91 – 7.89 (m, 1H), 7.84 (d, *J* = 2.1 Hz, 1H), 7.56 – 7.49 (m, 3H), 7.39 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.99 (dd, *J* = 4.0, 1.0 Hz, 1H), 6.92 – 6.86 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 138.4, 135.1, 133.0, 131.6, 130.2, 128.9, 128.8, 128.0, 125.9, 125.5, 115.1, 114.8, 114.0, 109.4.

7-methoxy-4-phenylpyrrolo[**1**,**2**-*α*]**quinoxaline**⁶ (**13**); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, *J* = 7.4, 1.8 Hz, 2H), 7.87 (d, *J* = 1.2 Hz, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.58 – 7.46 (m, 4H), 7.09 (dd, *J* = 9.0, 2.7 Hz, 1H), 6.95 (d, *J* = 3.3 Hz, 1H), 6.86 – 6.79 (m, 1H), 3.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 154.8, 138.7, 137.5, 129.9, 128.8, 128.7, 125.2, 121.6, 116.8, 114.7, 114.4, 113.8, 111.1, 108.5, 55.9.

7-methyl-4-phenylpyrrolo[1,2- α]quinoxaline⁶ (14); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 7.6, 1.9 Hz, 2H), 7.90 – 7.87 (m, 1H), 7.84 (s, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.58 – 7.48 (m, 3H), 7.27 (dd, J = 8.3, 1.4 Hz, 1H), 6.96 (dd, J = 4.0, 1.0 Hz, 1H), 6.83 (dd, J = 3.9, 2.8 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 138.8, 136.4, 135.1, 130.2, 129.8, 128.8, 128.7, 125.4, 125.1, 114.5, 113.8, 113.5, 108.5, 21.3.

7-chloro-4-phenylpyrrolo[1,2-*a*]quinoxaline⁶ (15); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 2.3 Hz, 1H), 7.99 – 7.94 (m, 2H), 7.91 (dd, J = 2.5, 1.0 Hz, 1H), 7.75 (d, J

= 8.8 Hz, 1H), 7.56 – 7.50 (m, 3H), 7.42 (dd, J = 8.8, 2.3 Hz, 1H), 7.00 (dd, J = 4.0, 1.1 Hz, 1H), 6.88 (dd, J = 4.0, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 138.3, 137.4, 130.6, 130.3, 129.8, 128.8, 127.6, 126.0, 125.4, 115.1, 115.0, 114.6, 109.5.

4-phenyl-7-(trifluoromethyl)pyrrolo[1,2-*a*]quinoxaline⁶ (16); white solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 7.1 Hz, 2H), 8.07 – 8.03 (m, 1H), 8.03 – 7.97 (m, 2H), 7.72 – 7.64 (m, 1H), 7.61 – 7.51 (m, 3H), 7.06 (dd, *J* = 4.0, 1.0 Hz, 1H), 6.95 (dd, *J* = 4.0, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 138.6, 138.1, 131.0, 130.5, 128.9 (q, *J* = 33.2 Hz), 128.8, 128.7, 127.1, 125.5, 124.1 (q, *J* = 273.3 Hz), 121.8 (q, *J* = 3.6 Hz), 115.6, 114.9, 111.4 (q, *J* = 4.2 Hz), 110.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.91.

methyl 4-phenylpyrrolo[1,2-α]quinoxaline-7-carboxylate (17); pale-white solid, EtOAc/Hx=1:4, mp 183-185 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 1.7 Hz, 1H), 8.15 (dd, J = 8.6, 1.8 Hz, 1H), 8.00 (dd, J = 6.5, 3.1 Hz, 3H), 7.86 (d, J = 8.6 Hz, 1H), 7.55 (dd, J = 4.9, 1.6 Hz, 3H), 7.09 – 6.99 (m, 1H), 6.95 – 6.90 (m, 1H), 3.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 155.2, 138.2, 135.9, 132.3, 130.2, 128.8, 128.4, 127.1, 125.6, 115.4, 115.0, 113.8, 109.7, 52.4, 29.9; HRMS (EI) m/z calcd. For C₁₉H₁₄N₂O₂ [M]⁺: 302.1055, found 302.1056.

7,8-dichloro-4-phenylpyrrolo[**1,2-***α*]**quinoxaline**⁷ **(18)**; yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.99 – 7.94 (m, 2H), 7.93 (s, 1H), 7.89 – 7.87 (m, 1H), 7.56 – 7.50 (m, 3H), 7.02 (dd, *J* = 4.0, 0.9 Hz, 1H), 6.90 (dd, *J* = 3.9, 2.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 138.0, 135.9, 131.3, 131.1, 130.5, 129.0, 128.9, 128.8, 126.5, 125.3, 115.4, 115.4, 115.0, 110.1.

6-phenylpyrido[**3**,**2-e**]**pyrrolo**[**1**,**2**-*α*]**pyrazine**⁶ (**19**); light-yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.53 (dd, *J* = 4.6, 1.6 Hz, 1H), 8.47 (dd, *J* = 2.7, 1.3 Hz, 1H), 8.30 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.00 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.59 – 7.50 (m, 3H), 7.44 (dd, *J* = 8.0, 4.7 Hz, 1H), 7.06 (dd, *J* = 3.9, 1.3 Hz, 1H), 6.93 (dd, *J* = 3.8, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 146.8, 139.5, 138.2, 137.6, 131.4, 130.4, 128.9, 128.9, 127.0, 121.9, 116.2, 114.7, 110.6.

6-phenylindolo[1,2-α]quinoxaline⁷ **(20)**; yellow solid, EtOAc/Hx=1:10, ¹H NMR (400 MHz, CDCl₃) δ 8.53 (t, *J* = 9.3 Hz, 2H), 8.10 (d, *J* = 7.8 Hz, 1H), 8.06 – 7.99 (m, 2H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.68 – 7.52 (m, 5H), 7.46 (dd, *J* = 8.1, 6.0 Hz, 2H), 7.26 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 138.5, 136.5, 133.3, 130.8, 130.5, 130.3, 129.5, 129.4, 128.9, 128.9, 128.6, 124.6, 124.4, 123.0, 122.9, 114.9, 114.8, 102.8.

7-methyl-6-phenylindolo[1,2-α]quinoxaline⁸ (21); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, *J* = 8.3, 3.9 Hz, 2H), 8.00 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.68 – 7.49 (m, 7H), 7.47 – 7.35 (m, 2H), 2.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 139.9, 136.0, 132.2, 130.8, 130.5, 130.4, 129.4, 128.8, 128.7, 128.5, 126.0, 124.9, 124.0, 122.2, 121.0, 114.6, 111.1, 11.3.

4-(*p***-tolyl)pyrrolo[1,2-***a***]quinoxaline⁶ (8); yellow solid, EtOAc/MeOH/PE=1:5:20, ¹H NMR (400 MHz, CDCl₃) \delta 8.02 (dd, J = 7.9, 1.4 Hz, 1H), 7.98 – 7.88 (m, 3H), 7.85 (dd, J = 8.0, 1.3 Hz, 1H), 7.46 (dtd, J = 15.0, 7.3, 1.5 Hz, 2H), 7.38 – 7.31 (m, 2H), 6.99 (dd, J = 4.0, 1.3 Hz, 1H), 6.87 (dd, J = 4.0, 2.7 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 154.5, 140.0, 136.4, 135.8, 130.3, 129.4, 128.7, 127.4, 127.2, 125.5, 125.3, 114.7, 114.0, 113.7, 108.8, 21.6.**

4-(pyrrolo[1,2-α]quinoxalin-4-yl)phenol⁹ (22); follow the general procedure without filtering process, white solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, DMSO) δ 9.94 (s, 1H), 8.49 (d, *J* = 1.4 Hz, 1H), 8.27 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.6 Hz, 3H), 7.50 (dt, *J* = 33.6, 7.6 Hz, 2H), 7.06 – 6.89 (m, 4H); ¹³C NMR (101 MHz, DMSO) δ 159.7, 153.3, 136.1, 130.5, 129.7, 129.2, 127.8, 127.0, 125.8, 124.6, 116.7, 115.8, 115.0, 114.5, 108.8.

4-(4-methoxyphenyl)pyrrolo[**1**,**2**-*α*]**quinoxaline**⁶ (**23**); light-yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 8.01 – 7.94 (m, 3H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.56 – 7.38 (m, 2H), 7.13 – 7.03 (m, 2H), 7.00 (d, *J* = 1.1 Hz, 1H), 6.89 (d, *J* = 1.3 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 154.1, 136.6, 131.3, 130.3, 130.3, 127.4, 127.3, 125.6, 125.4, 114.7, 114.2, 114.1, 113.8, 108.8, 55.7.

4-(4-(methylthio)phenyl)pyrrolo[**1**,**2**-*α*]**quinoxaline (24)**; yellow solid, EtOAc/Hx=1:4, mp 90-92 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.02 (dd, J = 7.9, 1.4 Hz, 1H), 7.95 (d, J = 8.5 Hz, 3H), 7.85 (dd, J = 8.0, 1.2 Hz, 1H), 7.54 – 7.43 (m, 2H), 7.41 (t, J = 5.2 Hz, 2H), 6.99 (dd, J = 4.0, 1.2 Hz, 1H), 6.88 (dd, J = 4.0, 2.8 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 141.1, 136.4, 135.3, 130.3, 129.2, 127.6, 127.3, 126.3, 125.5, 125.4, 114.8, 114.1, 113.8, 108.7, 15.7; HRMS (EI) m/z calcd. For $C_{18}H_{14}N_2S$ [M]⁺: 290.0878, found 290.0876.

4-phenylpyrrolo[1,2-*α*]**quinoxaline**⁶ (25); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 7.9, 1.5 Hz, 1H), 8.02 – 7.96 (m, 3H), 7.85 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.58 – 7.42 (m, 5H), 6.98 (dd, *J* = 4.0, 1.2 Hz, 1H), 6.88 (dd, *J* = 4.0, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 138.5, 136.2, 130.1, 129.8, 128.6, 128.5, 127.3, 127.0, 125.2, 125.1, 114.6, 113.9, 113.5, 108.6.

4-(4-chlorophenyl)pyrrolo[1,2-*α*]quinoxaline⁶ (26); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.99 (m, 2H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.91 – 7.86 (m, 1H), 7.58 – 7.42 (m, 4H), 6.96 (dd, *J* = 4.0, 1.1 Hz, 1H), 6.91 (dd, *J* = 3.9, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.3, 137.2, 136.4, 136.1, 130.5, 130.2, 129.1, 127.9, 127.4, 125.6, 125.4, 115.0, 114.3, 113.9, 108.7.

4-(4-bromophenyl)pyrrolo[1,2-α]quinoxaline⁶ (27); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.7 Hz, 2H), 7.95 – 7.85 (m, 3H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.48 (d, *J* = 7.9 Hz, 1H), 6.96 (d, *J* = 3.5 Hz, 1H), 6.92 (d, *J* = 2.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 137.6, 136.4, 132.0, 130.5, 130.5, 128.0, 127.4, 125.6, 125.3, 124.4, 115.1, 114.3, 113.9, 108.7.

4-(4-(trifluoromethyl)phenyl)pyrrolo[1,2-α]quinoxaline⁶ (28); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.0 Hz, 2H), 8.06 – 7.97 (m, 2H), 7.88 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 2H), 7.57 – 7.50 (m, 1H), 7.49 – 7.43 (m, 1H), 6.94 (dd, *J* = 4.0, 1.2 Hz, 1H), 6.91 (dd, *J* = 4.0, 2.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.8, 142.0, 136.1, 131.7 (q, *J* = 32.5 Hz), 130.4, 129.2, 128.0, 127.2, 125.6 (q, *J* = 3.7 Hz), 125.5, 125.1, 124.2 (q, *J* = 272.3 Hz), 115.0, 114.3, 113.8, 108.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.71.

4-(4-nitrophenyl)pyrrolo[1,2-*α*]**quinoxaline**⁹ (29); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 8.2 Hz, 2H), 8.19 (d, *J* = 8.2 Hz, 2H), 8.05 (d, *J* = 7.1 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.3 Hz, 1H), 6.96 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 148.8, 144.7, 136.1, 130.7, 129.9, 128.6, 127.4, 125.9, 125.0, 124.0, 115.4, 114.7, 114.0, 108.5.

4-(3-methoxyphenyl)pyrrolo[1,2-*α*]quinoxaline⁶ (30); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.96 (dd, *J* = 2.6, 1.1 Hz, 1H), 7.84 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.61 – 7.39 (m, 5H), 7.10 – 7.03 (m, 1H), 7.00 (dd, *J* = 4.0, 1.1 Hz, 1H), 6.87 (dd, *J* = 3.9, 2.8 Hz, 1H), 3.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 154.4, 140.0, 136.4, 130.4, 129.8, 127.7, 127.4, 125.5, 125.5, 121.3, 116.1, 114.8, 114.2, 114.0, 113.8, 108.9, 55.6.

4-(*m***-tolyl)pyrrolo[1,2-α]quinoxaline⁶ (31)**; yellow solid, EtOAc/MeOH/PE=1:5:20, ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, *J* = 7.9, 1.3 Hz, 1H), 8.00 (dd, *J* = 2.6, 1.2 Hz, 1H), 7.89 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.79 (d, *J* = 11.9 Hz, 2H), 7.57 – 7.39 (m, 3H), 7.34 (d, *J* = 7.6 Hz, 1H), 6.99 (dd, *J* = 4.0, 1.2 Hz, 1H), 6.90 (dd, *J* = 4.0, 2.8 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 138.5, 138.4, 136.3, 130.7, 130.2, 129.3, 128.5, 127.4, 127.2, 125.9, 125.5, 125.3, 114.6, 114.0, 113.7, 108.8, 21.7.

4-(3-chlorophenyl)pyrrolo[1,2-α]quinoxaline¹⁰ (32); pale solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.0 Hz, 1H), 7.99 (s, 2H), 7.87 (dd, *J* = 12.2, 5.0 Hz, 2H), 7.48 (td, *J* = 15.3, 6.7 Hz, 4H), 6.96 (s, 1H), 6.89 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 140.4, 136.3, 134.9, 130.5, 130.1, 129.0, 128.0, 127.4, 127.0, 125.6, 125.3, 115.1, 114.4, 113.9, 108.7.

4-(3-nitrophenyl)pyrrolo[1,2-α]quinoxaline¹¹ (33); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.89 (t, J = 1.8 Hz, 1H), 8.37 (dt, J = 7.7, 1.8 Hz, 2H), 8.03 (dd, J = 8.1, 1.4 Hz, 2H), 7.91 (dd, J = 8.2, 1.1 Hz, 1H), 7.72 (t, J = 8.0 Hz, 1H), 7.63 – 7.53 (m, 1H), 7.53 – 7.45 (m, 1H), 6.96 (ddd, J = 6.8, 4.1, 2.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 148.7, 140.3, 136.2, 134.8, 130.7, 129.9, 128.5, 127.4, 125.8, 125.0, 124.7, 124.0, 115.4, 114.7, 114.0, 108.4.

4-(2-methoxyphenyl)pyrrolo[1,2-*α*]quinoxaline⁶ (34); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.92 (dd, *J* = 2.5, 1.2 Hz, 1H), 7.84 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.57 – 7.37 (m, 4H), 7.08 (ddd, *J* = 22.1, 11.0, 4.5 Hz, 2H), 6.80 (dd, *J* = 3.9, 2.8 Hz, 1H), 6.58 (dd, *J* = 4.0, 1.2 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 153.7, 136.4, 130.7, 130.4, 127.7, 127.6, 126.7, 125.2, 120.9, 114.2, 113.9, 113.8, 111.7, 108.7, 55.9.

4-(*o***-tolyl)pyrrolo[1,2-***α***]quinoxaline⁶ (35)**; yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.02 (m, 1H), 7.98 – 7.94 (m, 1H), 7.91 – 7.86 (m, 1H), 7.59 – 7.42 (m, 3H), 7.41 – 7.27 (m, 3H), 6.83 (dd, *J* = 3.8, 2.8 Hz, 1H), 6.57 (dd, *J* = 3.9, 1.0 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 137.7, 136.6, 136.2, 131.0, 130.4, 129.2, 129.1, 127.7, 127.4, 126.5, 125.8, 125.4, 114.7, 114.1, 113.9, 108.8, 19.9.

4-(2-chlorophenyl)pyrrolo[1,2- α]quinoxaline¹⁰ (36); pale solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 7.9, 1.5 Hz, 1H), 7.91 (dd, J = 2.6, 1.2 Hz, 1H), 7.81 (dd, J = 8.1, 1.2 Hz, 1H), 7.59 – 7.45 (m, 3H), 7.45 – 7.42 (m, 1H), 7.41 – 7.35 (m, 2H), 6.81 (dd, J = 4.0, 2.7 Hz, 1H), 6.56 (dd, J = 4.0, 1.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.1, 137.0, 135.9, 133.0, 130.8, 130.4, 130.3, 130.2, 128.0, 127.4, 126.9, 125.8, 125.3, 114.7, 114.1, 113.8, 108.6.

4-(2-nitrophenyl)pyrrolo[**1**,**2**-*α*]**quinoxaline** (**37**); yellow solid, EtOAc/Hx=1:4, mp 169-171 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, *J* = 8.2, 0.7 Hz, 1H), 8.00 – 7.91 (m, 2H), 7.88 (dd, *J* = 8.2, 1.0 Hz, 1H), 7.77 (dtd, *J* = 8.8, 7.6, 1.4 Hz, 2H), 7.65 (ddd, *J* = 8.2, 7.2, 1.9 Hz, 1H), 7.60 – 7.50 (m, 1H), 7.49 – 7.41 (m, 1H), 6.83 (dd, *J* = 4.0, 2.7 Hz, 1H), 6.56 (dd, *J* = 4.0, 1.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 149.1, 136.1, 133.4, 131.4, 130.5, 130.3, 128.3, 127.5, 125.6, 125.5, 125.0, 115.2, 114.4, 114.0, 107.3; HRMS (EI) m/z calcd. For C₁₇H₁₁N₃O₂ [M]⁺: 289.0851, found 289.0853.

4-(naphthalen-2-yl)pyrrolo[1,2-α]quinoxaline⁶ (38); yellow solid, EtOAc/MeOH/PE=1:5:20, ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 8.10 (ddd, J = 9.1, 8.2, 1.4 Hz, 2H), 8.03 – 7.92 (m, 4H), 7.90 (d, J = 8.5 Hz, 1H), 7.58 – 7.42 (m, 4H), 7.07 (d, J = 3.1 Hz, 1H), 6.96 – 6.88 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 136.6, 136.1, 134.3, 133.4, 130.5, 129.0, 128.6, 128.5, 128.0, 127.7, 127.4, 127.1, 126.6, 126.3, 125.7, 125.5, 114.9, 114.3, 113.9, 109.0.

4-(furan-2-yl)pyrrolo[1,2-α]quinoxaline⁶ **(39)**; yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 7.6, 1.8 Hz, 1H), 7.93 – 7.90 (m, 1H), 7.81 – 7.76 (m, 1H), 7.70 (d, J = 0.8 Hz, 1H), 7.46 – 7.36 (m, 4H), 6.89 (dd, J = 3.9, 2.9 Hz, 1H), 6.62 (dd, J = 3.4, 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 144.5, 143.4, 135.8, 129.9, 127.3, 127.0, 125.3, 123.1, 114.5, 114.1, 113.6, 112.8, 112.0, 108.4.

4-(thiophen-2-yl)pyrrolo[1,2-α]quinoxaline⁶ (40); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.92 (m, 2H), 7.81 (d, J = 1.4 Hz, 1H), 7.66 (dd, J = 5.8, 3.5 Hz, 1H), 7.53 (d, J = 5.0 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.22 – 7.16 (m, 2H), 6.82 – 6.78 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.1, 142.5, 135.7, 129.7, 128.7, 128.2, 127.8, 127.2, 126.8, 125.2, 123.8, 114.6, 114.0, 113.4, 107.7.

4-(pyridin-3-yl)pyrrolo[1,2-α]quinoxaline⁶ (**41**); pale solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 9.27 – 9.23 (m, 1H), 8.76 (dd, J = 4.8, 1.6 Hz, 1H), 8.31 (dt, J = 7.9, 1.9 Hz, 1H), 8.05 – 8.01 (m, 2H), 7.89 (d, J = 8.2 Hz, 1H), 7.58 – 7.44 (m, 3H), 6.98 (dd, J = 4.0, 1.1 Hz, 1H), 6.92 (dd, J = 4.0, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 151.0, 149.8, 136.3 136.3, 134.5, 130.6, 128.2, 127.4, 125.7, 125.3, 123.7, 115.2, 114.6, 114.0, 108.6.

4-phenethylpyrrolo[1,2-*α*]**quinoxaline**⁶ (**42**); yellow oil, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 7.8, 1.5 Hz, 1H), 7.88 (dd, J = 2.5, 1.1 Hz, 1H), 7.80 (dd, J = 8.0, 1.2 Hz, 1H), 7.50 – 7.39 (m, 2H), 7.37 – 7.27 (m, 4H), 7.22 (dd, J = 5.2, 3.0 Hz, 1H), 6.88 (dd, J = 3.9, 1.1 Hz, 1H), 6.83 (dd, J = 3.9, 2.8 Hz, 1H), 3.36 – 3.28 (m, 2H), 3.26 – 3.20 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 141.7, 135.9, 129.4, 128.5, 127.2, 126.9, 126.8, 126.1, 125.8, 125.0, 114.1 113.5, 113.4, 106.0, 37.4, 34.0.

4-propylpyrrolo[1,2-*α*]**quinoxaline**¹² **(43)**; yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.86 (dd, *J* = 2.5, 1.1 Hz, 1H), 7.78 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.46 – 7.36 (m, 2H), 6.88 (dd, *J* = 3.9, 1.1 Hz, 1H), 6.81 (dd, *J* = 3.9, 2.8 Hz, 1H), 2.98 (dd, *J* = 8.7, 6.9 Hz, 2H), 1.97 – 1.87 (m, 2H), 1.06 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 135.9, 129.3, 127.1, 126.6, 125.9, 124.9, 113.9, 113.4, 113.3, 106.1, 37.7, 21.8, 14.3.

4-(heptan-3-yl)pyrrolo[1,2-α]quinoxaline¹³ (44); colorless oil, EtOAc/Hx=1:20, ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 1H), 7.89 (dd, *J* = 2.7, 1.2 Hz, 1H), 7.82 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.47 – 7.37 (m, 2H), 6.92 (d, *J* = 4.0 Hz, 1H), 6.82 (dd, *J* = 3.9, 2.8 Hz, 1H), 3.12 – 3.01 (m, 1H), 2.01 (tt, *J* = 16.5, 8.3 Hz, 2H), 1.86 – 1.70 (m, 2H), 1.35 – 1.15 (m, 4H), 0.84 (dt, *J* = 13.9, 7.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 136.3, 129.8, 127.3, 127.1, 127.0, 125.2, 114.4, 113.8, 113.6, 106.5, 46.7, 34.2, 30.4, 27.7, 23.1, 14.2, 12.7.

4-cyclohexylpyrrolo[1,2-*α*]**quinoxaline**⁶ (**45**); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.87 (d, *J* = 1.5 Hz, 1H), 7.81 – 7.77 (m, 1H), 7.46 – 7.36 (m, 2H), 6.94 – 6.89 (m, 1H), 6.83 – 6.80 (m, 1H), 3.12 (tt, *J* = 11.8, 3.2 Hz, 1H), 2.02 (d, *J* = 13.0 Hz, 2H), 1.97 – 1.75 (m, 5H), 1.55 – 1.32 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 136.4, 129.9, 127.4,

4-((benzyloxy)methyl)pyrrolo[1,2-*a*]quinoxaline (46); red solid, EtOAc/Hx=1:4, mp 80-81 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 8.0, 1.5 Hz, 1H), 7.92 (dd, J = 2.7, 1.3 Hz, 1H), 7.84 (dd, J = 8.2, 1.3 Hz, 1H), 7.55 – 7.48 (m, 1H), 7.47 – 7.26 (m, 6H), 7.12 – 7.07 (m, 1H), 6.90 – 6.84 (m, 1H), 4.90 (s, 2H), 4.68 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 153.2, 138.0, 135.6, 130.2, 128.6, 128.3, 128.0, 127.9, 127.8, 125.3, 125.2, 114.4, 114.1, 113.9, 107.5, 73.2, 72.7; HRMS (EI) m/z calcd. For C₁₉H₁₆N₂O [M]⁺: 288.1263, found 288.1265.

tert-butyl methyl(pyrrolo[1,2- α]quinoxalin-4-ylmethyl)carbamate (47); orange oil, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 8.0, 1.5 Hz, 2H), 7.83 (d, J = 8.1 Hz, 1H), 7.52 – 7.45 (m, 1H), 7.42 (dd, J = 11.2, 4.0 Hz, 1H), 7.02 (d, J = 63.7 Hz, 1H), 6.84 (d, J = 2.7 Hz, 1H), 4.78 (d, J = 24.7 Hz, 2H), 2.92 (d, J = 34.5 Hz, 3H), 1.53 – 1.41 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 152.6, 135.4, 129.9, 127.7, 125.1, 124.9, 114.5, 114.0, 113.7, 107.1, 106.0, 80.0, 52.3, 34.2, 28.6; HRMS (EI) m/z calcd. For C₁₈H₂₁N₃O₂ [M]⁺: 311.1634, found 311.1635.

4-(2-(methylthio)ethyl)pyrrolo[1,2-α]quinoxaline (48); yellow solid, EtOAc/Hx=1:4, mp 54-55 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.91 (ddd, J = 4.1, 2.2, 1.3 Hz, 2H), 7.82 (dd, J = 8.1, 1.4 Hz, 1H), 7.45 (dddd, J = 22.8, 7.8, 7.3, 1.5 Hz, 2H), 6.91 (dd, J = 4.0, 1.3 Hz, 1H), 6.85 (dd, J = 4.0, 2.7 Hz, 1H), 3.31 (ddd, J = 8.9, 5.8, 2.6 Hz, 2H), 3.12 – 3.03 (m, 2H), 2.20 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 136.0, 129.7, 127.4, 127.3, 126.0, 125.3, 114.6, 113.8, 113.8, 106.3, 35.7, 32.4, 16.0; HRMS (EI) m/z calcd. For C₁₄H₁₄N₂S [M]⁺: 242.0878, found 242.0876.

4-(cyclohex-3-en-1-yl)pyrrolo[1,2-α]quinoxaline (49); orange solid, EtOAc/Hx=1:4, mp 82-83 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.89 (m, 2H), 7.86 – 7.79 (m, 1H), 7.43 (dddd, *J* = 20.3, 7.7, 7.3, 1.6 Hz, 2H), 6.92 (dd, J = 4.0, 1.3 Hz, 1H), 6.83 (dd, J = 4.0, 2.7 Hz, 1H), 5.89 – 5.77 (m, 2H), 3.38 (dd, J = 11.0, 10.2, 4.9 Hz, 1H), 2.78 – 2.65 (m, 1H), 2.41 – 2.23 (m, 3H), 2.13 – 2.00 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 136.3, 129.9, 127.3, 127.0, 126.8, 125.8, 125.1, 114.2, 113.7, 113.4, 105.8, 39.5, 30.0, 27.8, 26.0; HRMS (EI) m/z calcd. For C₁₇H₁₆N₂ [M]⁺: 248.1313, found 248.1316.

4-(phenylethynyl)pyrrolo[1,2-α]quinoxaline⁶ (**50**); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 7.9, 1.1 Hz, 1H), 7.91 – 7.85 (m, 1H), 7.77 (dd, J = 8.0, 2.3 Hz, 1H), 7.70 (dd, J = 3.6, 3.0, 1.5 Hz, 2H), 7.51 – 7.35 (m, 5H), 7.14 – 7.08 (m, 1H), 6.91 – 6.85 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 136.1, 132.5, 130.1, 129.7, 128.6, 128.2, 127.3, 127.1, 125.5, 121.8, 114.7, 114.2, 113.7, 107.7, 93.2, 86.0.

phenyl(pyrrolo[1,2-α]quinoxalin-4-yl)methanone¹⁴ **(51)**; yellow solid, EtOAc/Hx=1:10, ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 7.8 Hz, 2H), 8.03 (d, *J* = 7.7 Hz, 2H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.63 (t, *J* = 7.4 Hz, 2H), 7.50 (dd, *J* = 13.6, 7.0 Hz, 3H), 7.22 (d, *J* = 3.9 Hz, 1H), 6.99 – 6.95 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 150.1, 136.0, 135.0, 133.8, 131.3, 131.2, 129.6, 128.6, 128.1, 125.7, 124.6, 115.1, 115.0, 114.1, 109.1.

pyrrolo[1,2-*α*]**quinoxaline**¹⁵ (52); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.94 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 7.1 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 6.93 – 6.87 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 146.0, 136.1, 130.4, 128.2, 128.0, 126.7, 125.4, 114.4, 114.2, 114.0, 107.5.

8-chloro-4-(4-chlorophenyl)pyrrolo[1,2-α]quinoxaline¹⁶ (2); light-yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 4H), 7.87 (d, J = 2.2 Hz, 1H), 7.54 – 7.49 (m, 2H), 7.41 (dd,

J = 8.7, 2.2 Hz, 1H), 6.97 (dd, *J* = 4.1, 1.3 Hz, 1H), 6.92 (dd, *J* = 4.1, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 136.8, 136.3, 134.9, 133.3, 131.6, 130.2, 129.1, 127.9, 126.1, 125.2, 115.3, 114.9, 114.1, 109.2.

4-butyl-7-methoxypyrrolo[**1**,**2**-*α*]**quinoxaline**¹⁷ (**5**); yellow oil, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 2.7, 1.3 Hz, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.40 (d, *J* = 2.8 Hz, 1H), 7.07 (dd, *J* = 9.0, 2.8 Hz, 1H), 6.87 (dd, *J* = 4.0, 1.3 Hz, 1H), 6.80 (dd, *J* = 4.0, 2.7 Hz, 1H), 3.90 (s, 3H), 3.00 (dd, *J* = 8.8, 7.1 Hz, 2H), 1.92 – 1.81 (m, 2H), 1.55 – 1.43 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 156.9, 137.0, 125.6, 121.4, 115.7, 114.3, 113.6, 112.9, 110.7, 105.8, 55.5, 35.6, 30.7, 22.9, 14.0.

4,5-diphenyl-2-(2-(pyrrolo[**1**,**2**-*a*]**quinoxalin-4-yl)ethyl)oxazole** (**53**); pale-orange solid, EtOAc/Hx=1:4, mp 136-138 °C, ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J = 7.9, 1.2 Hz, 1H), 7.88 (d, J = 1.4 Hz, 1H), 7.82 – 7.78 (m, 1H), 7.69 – 7.63 (m, 2H), 7.58 – 7.52 (m, 2H), 7.49 – 7.29 (m, 8H), 6.98 – 6.93 (m, 1H), 6.86 – 6.80 (m, 1H), 3.63 – 3.57 (m, 2H), 3.56 – 3.49 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 154.9, 145.5, 136.1, 135.4, 132.9, 129.8, 129.3, 128.8, 128.7, 128.5, 128.2, 127.5, 127.3, 126.6, 126.0, 125.3, 114.5, 113.8, 113.8, 106.3, 32.4, 26.2; HRMS (EI) m/z calcd. For C₂₈H₂₁N₃O [M]⁺: 415.1685, found 415.1689.

(E)-4-styrylpyrrolo[1,2-*α*]**quinoxaline**⁶ **(54)**; yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 15.9 Hz, 1H), 8.00 (dd, J = 7.6, 1.8 Hz, 1H), 7.97 – 7.94 (m, 1H), 7.87 – 7.82 (m, 1H), 7.70 (d, J = 7.3 Hz, 2H), 7.55 – 7.39 (m, 5H), 7.36 (t, J = 7.3 Hz, 1H), 7.11 (dd, J = 4.0, 1.1 Hz, 1H), 6.92 (dd, J = 3.9, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 136.8, 136.6, 136.4, 130.0, 129.2, 129.0, 127.9, 127.5, 127.3, 126.3, 125.6, 123.5, 114.7, 114.0, 113.9, 106.2.

4-(pyrrolo[1,2-α]quinoxalin-4-yl)benzonitrile⁶ (55); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.10 (m, 2H), 8.06 – 8.01 (m, 2H), 7.90 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.86 – 7.81 (m, 2H), 7.57 (ddd, *J* = 8.2, 7.3, 1.5 Hz, 1H), 7.49 (ddd, *J* = 8.0, 7.3, 1.4 Hz, 1H), 6.97 – 6.91 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 142.9, 136.2, 132.7, 130.7, 129.6, 128.5, 127.4, 125.8, 125.0, 118.9, 115.4, 114.6, 114.0, 113.6, 108.5.

ethyl pyrrolo[1,2-*α*]**quinoxaline-4-carboxylate**¹⁸ (56); yellow solid, EtOAc/Hx=1:4, ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.11 (m, 1H), 8.01 (dd, *J* = 2.7, 1.3 Hz, 1H), 7.88 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.52 (dd, *J* = 4.1, 1.3 Hz, 1H), 7.50 – 7.46 (m, 1H), 6.97 (dd, *J* = 4.1, 2.7 Hz, 1H), 4.58 (q, *J* = 7.1 Hz, 2H), 1.51 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.3, 143.4, 134.8, 131.7, 130.0, 128.3, 125.7, 124.7, 115.2, 115.2, 113.9, 110.2, 62.6, 14.5.

5. Procedure of 1d-mediated oxidative cyclization on large scale

A 100 mL flame-dried round-bottom flask, which was equipped with a magnetic stir bar and charged with 2-(1*H*-pyrrol-1-yl)aniline **6** (10.0 mmol), ethyl 2-(4-nitrophenyl)azocarboxylate **1d** (1.0 equiv., 10.0 mmol), was evacuated and backfilled with nitrogen (this process was repeated three times). After 5.0 mL of methanol was added, 4-methylbenzaldehyde **7** (1.2 equiv, 12.0 mmol), acetic acid (0.1 equiv, 1.0 mmol), and methanol (5.0 mL) were added in sequence. The reaction mixture was stirred at room temperature for 1 h. The reaction mixture was concentrated on rotary evaporator. The crude mixture was dissolved in CHCl₃ (100 mL) and filtered through a Büchner funnel (to separate hydrazine byproduct). The Büchner funnel was washed with additional CHCl₃ (100 mL). The reaction mixture was concentrated on rotary evaporator, separate hydrazine byproduct). The Büchner funnel was washed with additional CHCl₃ (100 mL) the reaction mixture was concentrated by column chromatography (silica gel, EtOAc/MeOH/PE=1:5:20) to provide pyrrolo[1,2- α]quinoxalines.

The hydrazine was obtained in 76% yield after dry. The obtained hydrazine was pure enough to use recycling without further purification. The ¹H NMR of the obtained hydrazine was attached below.

ethyl 2-(4-nitrophenyl)hydrazinecarboxylate¹ (1d'); yellow solid, ¹H NMR (400 MHz, DMSO) δ

9.37 (br, 1H), 8.95 (br, 1H), 8.05 (d, *J* = 9.2 Hz, 2H), 6.71 (d, *J* = 9.2 Hz, 2H), 4.06 (q, *J* = 6.9 Hz, 2H), 1.18 (t, *J* = 13.1 Hz, 3H).

6. Optimization for synthesis of quinazolinones

entry	temp. (°C)	time (h)	Yield $(\%)^a$
1	rt	24	44
2	rt	48	43
3	50	24	48
4	reflux	24	73
5 ^b	reflux	24	57

^{*a*}Yield of **57** was determined by ¹H NMR spectroscopy with 1,1,2,2-tetrachloroethane as internal standard. ^{*b*}AcOH (1.2 equiv.) was used.

3-methyl-2-phenylquinazolin-4(3*H***)-one¹⁹ (57)**; white solid, EtOAc/Hx=1:1, ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.0 Hz, 1H), 7.74 – 7.67 (m, 2H), 7.54 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.51 – 7.42 (m, 4H), 3.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 156.2, 147.4, 135.5, 134.4, 130.2, 129.0, 128.1, 127.6, 127.1, 126.8, 120.6, 34.4.

2-(4-methoxyphenyl)-3-methylquinazolin-4(3*H***)-one¹⁹ (58); white solid, EtOAc/Hx=1:1, ¹H NMR (400 MHz, CDCl₃) \delta 8.30 (d, J = 8.0 Hz, 1H), 7.77 – 7.69 (m, 2H), 7.56 – 7.50 (m, 2H), 7.47 (dd, J = 7.7, 6.2 Hz, 1H), 7.02 (d, J = 7.3 Hz, 2H), 3.86 (s, 3H), 3.52 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) \delta 163.1, 161.1, 156.2, 147.6, 134.4, 129.9, 127.9, 127.6, 126.9, 126.8, 120.6, 114.4, 55.7, 34.6.**

2-(4-chlorophenyl)-3-methylquinazolin-4(3*H***)-one¹⁹ (59)**; white solid, EtOAc/Hx=1:1, ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.0 Hz, 1H), 7.73 (ddd, *J* = 15.9, 11.5, 4.4 Hz, 2H), 7.55 – 7.46 (m, 5H), 3.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 155.2, 147.3, 136.5, 134.5, 133.9, 129.7, 129.3, 127.6, 127.3, 126.8, 120.7, 34.4.

2-cyclohexyl-3-methylquinazolin-4(3*H***)-one¹⁹ (60)**; yellow solid, EtOAc/Hx=1:1, ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.9 Hz, 1H), 7.72 – 7.58 (m, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 3.65 (s, 3H), 2.80 (t, *J* = 11.4 Hz, 1H), 1.82 (ddd, *J* = 31.8, 23.0, 11.7 Hz, 8H), 1.36 (dd, *J* = 22.7, 13.1 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 160.4, 147.6, 134.1, 127.3, 126.8, 126.3, 120.4, 42.5, 31.2, 30.2, 26.4, 26.0.

7. References

(1) (a) M. H. Kim and J. Kim, *J. Org. Chem.*, 2018, **83**, 1673–1679; (b) G. Jo, M. H. Kim and J. Kim, *Org. Chem. Front.*, 2020, **7**, 834–839.

- (2) J. C. Antilla, J. M. Baskin, T. E. Barder and S. L. Buchwald, J. Org. Chem., 2004, 69, 5578-5587.
- (3) X. Wang, H. Liu, C. Xie, F. Zhou and C. Ma, New J. Chem., 2020, 44, 2465–2470.

(4) (a) F. A. Luzzio, *Organic Reactions*, 1998, 53, 1-221; (b) W. O. Jung, B. K. Mai, B. J. Spinello, Z. J. Dubey, S. W. Kim, C. E. Stivala, J. R. Zbieg, P. Liu and M. J. Krische, *J. Am. Chem. Soc.*, 2021, 143, 9343-9349.

(5) L. R. Weinberg, M. S. Albom, T. S. Angeles, J. Husten, J. G. Lisko, R. J. McHugh, K. L. Milkiewicz,
S. Murthy, G. R. Ott, J. P. Theroff, R. Tripathy, T. L. Underiner, C. A. Zificsak and B. D. Dorsey, *Bioorg. Med. Chem. Lett.*, 2011, 21, 164-167.

- (6) S. Chun, J. Ahn, R. R. Putta, S. B. Lee, D.-C. Oh and S. Hong, J. Org. Chem., 2020, 85, 15314–15324.
- (7) S. Li, C. Xie, X. Chu, Z. Dai, L. Feng and C. Ma, Eur. J. Org. Chem., 2020, 2020, 4950-4956.
- (8) C. Xie, L. Feng, W. Li, X. Ma, X. Ma, Y. Liu and C. Ma, Org. Biomol. Chem., 2016, 14, 8529–8535.
- (9) T. Krishna, T. N. Reddy, E. Laxminarayana and D. Kalita, ChemistrySelect, 2019, 4, 250-253.
- (10) C. Wang, Y. Li, J. Zhao, B. Cheng, H. Wang and H. Zhai, Tetrahedron Lett., 2016, 57, 3908–3911.
- (11) G. S. Mani, A. V. S. Rao, Y. Tangella, S. Sunkari, F. Sultana, H. K. Namballa, N. Shankaraiah and A. Kamal, *New J. Chem.*, 2018, **42**, 15820–15829.
- (12) M. Lecomte, J. M. Lipshultz, S.-H. Kim-Lee, G. Li and A. T. Radosevich, J. Am. Chem. Soc., 2019, **141**, 12507–12512.
- (13) Z. He, M. Bae, J. Wu and T. F. Jamison, Angew. Chem. Int. Ed., 2014, 53, 14451-14455.
- (14) Z. Zhang, C. Xie, X. Tan, G. Song, L. Wen, H. Gao and C. Ma, Org. Chem. Front., 2015, 2, 942–946
- (15) X. Wang, H. Liu, C. Xie, F. Zhou and C. Ma, New J. Chem., 2020, 44, 2465–2470.
- (16) F. Aiello, G. Carullo, F. Giordano, E. Spina, A. Nigro, A. Garofalo, S. Tassini, G. Costantino, P. Vincetti, A. Bruno and M. Radi, *ChemMedChem*, 2017, **12**, 1279–1285.
- (17) R. Hernández-Ruiz, R. Rubio-Presa, S. Suárez-Pantiga, M. R. Pedrosa, M. A. Fernández-Rodríguez, M. J. Tapia and R. Sanz, *Chem. Eur. J.*, 2021, **27**, 13613–13623.
- (18) X.-F. Cui, F.-P. Hu, X.-Q. Zhou, Z.-Z. Zhan and G.-S. Huang, Synlett, 2020, 31, 1205–1210.
- (19) X. Zhang, C. Luo, X. Chen, W. Ma, B. Li, Z. Lin, X. Chen, Y. Li, F. Xie, *Tetrahedron Lett.*, 2021, **66**, 152835.

8. ¹H, ¹³C, and ¹⁹F NMR spectra

¹³C NMR (101 MHz, CDCl₃) spectrum of 4-methyl-2-(1*H*-pyrrol-1-yl)aniline (for 11)

¹H NMR (400 MHz, CDCl₃) spectrum of methyl 3-amino-4-(1*H*-pyrrol-1-yl)benzoate (for 17)

¹³C NMR (101 MHz, CDCl₃) spectrum of methyl 3-amino-4-(1*H*-pyrrol-1-yl)benzoate (for 17)

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 10

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 11

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 12

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 15

¹H NMR (400 MHz, CDCl₃) spectrum of compound 16

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 16

¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 16

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 17

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 18

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 20

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 21

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 8

¹H NMR (400 MHz, DMSO) spectrum of compound 22

¹³C NMR (101 MHz, DMSO) spectrum of compound 22

¹H NMR (400 MHz, CDCl₃) spectrum of compound 25

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 25

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 27

¹H NMR (400 MHz, CDCl₃) spectrum of compound 28

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 28

¹⁹F NMR (376 MHz, CDCl₃) spectrum of compound 28

¹H NMR (400 MHz, CDCl₃) spectrum of compound 29

¹H NMR (400 MHz, CDCl₃) spectrum of compound 33

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 36

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 37

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 38

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 40

¹H NMR (400 MHz, CDCl₃) spectrum of compound 41

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 43

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 44

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 45

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 47

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 50

¹H NMR (400 MHz, CDCl₃) spectrum of compound 2

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 2

¹H NMR (400 MHz, CDCl₃) spectrum of compound 55

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 55

¹H NMR (400 MHz, CDCl₃) spectrum of compound 56

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 56

¹H NMR (400 MHz, CDCl₃) spectrum of compound 57

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 57

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 58

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 59

¹H NMR (400 MHz, CDCl₃) spectrum of compound 60

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 60

