Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

†Electronic supplementary information (ESI)

N-(aryl)pyrrole-2-aldimine complexes of ruthenium: Synthesis, structure and, spectral and electrochemical properties[†]

Anushri Chandra,^a Papu Dhibar,^a Pragna Dutta,^a Piyali Paul^b and Samaresh Bhattacharya^{*a}

^a Department of Chemistry, Inorganic Chemistry Section, Jadavpur University,

Kolkata - 700 032, India. E-mail: samareshb.chemistry@jadavpuruniversity.in

^b Department of Chemistry and Environment, Heritage Institute of Technology,

Kolkata-700 107, India

Fig. S1. Crystal structure of the [Ru(L-CH₃)₂(dmso)₂] complex.

Bond distances (Å)							
Ru1-N1	2.0774(19)	N3-C16	1.385(3)				
Ru1-N2	2.1576(18)	C16-C17	1.408(3)				
Ru1-N3	2.0812(19)	N4-C17	1.308(3)				
Ru1-N4	2.1422(18)	N4-C18	1.421(3)				
Ru1-S1	2.2492(6)	S1-O1	1.474(2)				
Ru1-S2	2.2419(7)	S1-C25	1.781(3)				
N1-C4	1.378(3)	S1-C26	1.784(3)				
C4-C5	1.402(4)	S2-O2	1.467(2)				
N2-C5	1.313(3)	S2-C27	1.778(4)				
N2-C6	1.428(3)	S2-C28	1.778(3)				
Bond angles (°)							
N1-Ru1-N3	171.43(8)	N1-Ru1-N2	77.94(8)				
S1-Ru1-N2	171.34(5)	N3-Ru1-N4	78.11(7)				
S2-Ru1-N4	172.62(5)						

Table S1. Selected bond distances and bond angles for [Ru(L-CH₃)₂(dmso)₂].

Fig. S2. Crystal structure of the $[Ru(L-H)_2(dmso)_2]$ complex.

Table S2. Selected bond distances and bond	l angles for [Ru(L-H) ₂ (dmso) ₂].
--	---

Bond distances (Å)						
Ru1-N1	2.082(2)	C5-N2	1.312(4)			
Ru1-N2	2.148(2)	C6-N2	1.416(4)			
Ru1-S1	2.2459(8)	S1-O1	1.484(2)			
C4-N1	1.387(4)	C12-S1	1.789(4)			
C4-C5	1.406(4)	C13-S1	1.789(3)			
Bond angles (°)						
N1-Ru1-N1a	169.21(13)	N1-Ru1-N2	78.10(9)			
S1-Ru1-N2a	173.54(7)					

Fig. S3. Crystal structure of the $[Ru(L-Cl)_2(dmso)_2]$ complex.

Bond distances (Å)						
Ru1-N1	2.0806(13)	C5-N2	1.309(3)			
Ru1-N2	2.1415(17)	C6-N2	1.422(3)			
Ru1-S1	2.2504(5)	S1-O1	1.4853(15)			
C4-N1	1.380(2)	C12-S1	1.790(2)			
C4-C5	1.405(2)	C13-S1	1.782(2)			
Bond angles (°)						
N1-Ru1-N1a	171.30(10)	N1-Ru1-N2	77.61(7)			
S1-Ru1-N2	172.24(5)					

Table S3. Selected bond distances and bond angles for [Ru(L-Cl)₂(dmso)₂].

Fig. S4. DFT-optimized structure of the [Ru(L-OCH₃)₂(phen)] complex.

Bond distances (Å)						
Ru1-N1	2.1148	C4-C5	1.4087			
Ru1-N2	2.1762	N2-C5	1.3190			
Ru1-N3	2.1148	N2-C6	1.4167			
Ru1-N4	2.1762	N3-C16	1.3849			
Ru1-N5	2.0764	C16-C17	1.4087			
Ru1-N6	2.0764	N4-C17	1.3190			
N1-C4	1.3849	N4-C18	1.4167			
Bond angles (°)						
N1-Ru1-N3	174.15	N1-Ru1-N2	77.56			
N2-Ru1-N5	173.18	N3-Ru1-N4	77.56			
N4-Ru1-N6	173.18	N5-Ru1-N6	79.35			

Fig. S5. Energy difference (ΔE) between the reactants, intermediates and products for the phen reaction.

Fig. S6. ¹H NMR spectrum of [Ru(L-OCH₃)₂(bpy)] in CDCl₃ solution.

Fig. S7. ¹³C NMR spectrum of [Ru(L-OCH₃)₂(bpy)] in CDCl₃ solution.

Fig. S8. Electronic spectrum of $[Ru(L-OCH_3)_2(dmso)_2]$ in dichloromethane solution.

Excited	Composition	CI value	E(eV)	Oscillator	$\lambda_{ m theo}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
9	$H-3 \rightarrow L$	0.52215	3.4745	0.0182	356.85	MLCT/LLCT	361
	$H-3 \rightarrow L+2$	0.12248				LLCT/LMCT	
	$H-2 \rightarrow L+1$	0.40210				MLCT/ILCT	
	$H-2 \rightarrow L+5$	0.10548				ILCT/LMCT/LLCT	
	$H \rightarrow L+1$	0.11512				MLCT/ILCT	
18	$H-6 \rightarrow L$	0.12636	4.2299	0.0748	293.11	MLCT/ LLCT	298
	$H-4 \rightarrow L$	0.24950				ILCT/MLCT/LLCT	
	$H-1 \rightarrow L+3$	0.62639				ILCT/LMCT	
45	$H-2 \rightarrow L+7$	0.10803	5.1320	0.0198	241.59	LLCT/LMCT	233
_	$H-1 \rightarrow L+6$	0.15783				LLCT/LMCT	
	$H \rightarrow L+7$	0.64427				LMCT/LLCT	
	$H \rightarrow L+8$	0.13006				LMCT/LLCT	
1			1	1			

Table S5. Computed parameters from TDDFT calculations on [Ru(L-OCH₃)₂(dmso)₂]for electronic spectral properties in dichloromethane solution.

Table S6. Compositions of selected molecular orbitals of [Ru(L-OCH₃)₂(dmso)₂] associated with the electronic spectral transitions.

% Contribution of			Fragments		
fragments to	Ru	L-OCH ₃ (1)	L-OCH ₃ (2)	DMSO (1)	DMSO (2)
HOMO (H)	13	43	42	1	1
H-1	0	48	50	1	1
Н-2	46	26	26	1	1
H-3	52	23	23	1	1
H-4	6	46	46	1	1
H-6	65	14	13	4	4
LUMO (L)	4	50	46	0	0
L+1	3	46	49	1	1
L+2	55	12	12	10	11
L+3	2	48	48	1	1
L+5	52	20	20	4	4
L+6	18	13	13	28	28
L+7	59	2	2	19	18
L+8	19	38	37	3	3

Excited	Composition	CI value	<i>E</i> (eV)	Oscillator	$\lambda_{ m theo}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
10	$H-3 \rightarrow L$	0.35155	3.5790	0.0649	346.42	MLCT/LLCT	362
	$H-2 \rightarrow L+1$	0.45932				MLCT	
	$H-1 \rightarrow L$	0.29312				LMCT/LLCT	
	$H \rightarrow L+1$	0.25131				MLCT	
17	$H-6 \rightarrow L+1$	0.11733	4.3474	0.0791	285.19	LMCT	296
	$H-5 \rightarrow L$	0.29040				MLCT/ILCT	
	$H-4 \rightarrow L$	0.53986				MLCT/LLCT	
	$H-4 \rightarrow L+2$	0.22434				LLCT/LMCT	
	$H-1 \rightarrow L+3$	0.10327				LMCT/ILCT/LLCT	
	$H-1 \rightarrow L+5$	0.10910				LMCT/LLCT	
	$H \rightarrow L+2$	0.12302				LMCT/LLCT	
47	$H-10 \rightarrow L+2$	0.22300	5.1785	0.0049	239.42	LMCT/LLCT	232
	$H-9 \rightarrow L+2$	0.17687				LMCT/LLCT	
	$H-3 \rightarrow L+5$	0.13899				ILCT/MLCT	
	$H-3 \rightarrow L+6$	0.37084				MLCT/ILCT	
	$H-3 \rightarrow L+8$	0.20246				LLCT/LMCT	
	$H-2 \rightarrow L+2$	0.10090				ILCT/LLCT/LMCT	
	$H-2 \rightarrow L+7$	0.10274				MLCT/ILCT	
	$H \rightarrow L+9$	0.37242				LLCT/LMCT	

Table S7.Computed parameters from TDDFT calculations on $[Ru(L-CH_3)_2(dmso)_2]$ for electronic spectral properties in dichloromethane solution.

% Contribution	Fragments						
of fragments to	Ru	L-OCH ₃ (1)	L-OCH ₃ (2)	DMSO (1)	DMSO (2)		
HOMO (H)	16	41	41	1	1		
H-1	0	49	50	1	0		
H-2	46	26	26	1	1		
H-3	52	23	23	1	1		
H-4	56	18	18	4	4		
H-5	14	42	42	1	1		
H-6	2	48	48	1	1		
H-9	16	36	36	6	6		
H-10	14	35	35	8	8		
LUMO (L)	4	48	48	0	0		
L+1	3	48	47	1	1		
L+2	54	13	13	10	10		
L+3	1	49	48	1	1		
L+5	44	25	25	3	3		
L+6	21	24	24	16	15		
L+7	7	43	43	4	3		
L+8	62	2	2	17	17		
L+9	20	13	13	27	27		

Table S8. Compositions of selected molecular orbitals of $[Ru(L-CH_3)_2(dmso)_2]$ associated with the electronic spectral transitions.

Fig. S9. Contour plots of the molecular orbitals of [Ru(L-CH₃)₂(dmso)₂], which are associated with the electronic spectral transitions (See **Table S7**).

Excited	Composition	CI value	E (eV)	Oscillator	$\lambda_{ m theo}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
10	$H-3 \rightarrow L$	0.33033	3.5831	0.0618	346.42	MLCT/LLCT	362
	$H-2 \rightarrow L+1$	0.44927				MLCT/ILCT	
	$H-1 \rightarrow L$	0.32134				LMCT/ILCT	
	$H \rightarrow L+1$	0.26103				MLCT	
18	$H-5 \rightarrow L$	0.16605	4.3719	0.0630	283.59	MLCT/LLCT	294
	$H-4 \rightarrow L$	0.53796				MLCT/LLCT	
	$H-4 \rightarrow L+2$	0.29483				LLCT/MLCT	
	$H-1 \rightarrow L+3$	0.14986				ILCT/LMCT	
	$H \rightarrow L+2$	0.16599				LMCT/LLCT	
48	$H-11 \rightarrow L+1$	0.14411	5.2263	0.0112	237.23	LLCT/MLCT	234
	$H-6 \rightarrow L+2$	0.23293				LMCT/LLCT	
	$H-2 \rightarrow L+5$	0.15005				ILCT/LLCT/LMCT	
	$H-2 \rightarrow L+6$	0.28472				MLCT/ILCT/LLCT	
	$H-1 \rightarrow L+7$	0.26006				LMCT/ LLCT	
	$H \rightarrow L+8$	0.44984				LMCT /LLCT	

Table S9. Computed parameters from TDDFT calculations on $[Ru(L-H)_2(dmso)_2]$ for electronic spectral properties in dichloromethane solution.

% Contribution	Fragments						
of fragments to	Ru	L-OCH ₃ (1)	L-OCH ₃ (2)	DMSO (1)	DMSO (2)		
HOMO (H)	17	40	41	1	1		
H-1	0	50	49	1	0		
H-2	45	26	27	1	1		
H-3	52	23	23	1	1		
H-4	61	15	15	5	4		
H-5	10	43	43	2	2		
H-6	30	27	27	8	8		
H-11	16	15	15	27	27		
LUMO (L)	4	48	47	1	0		
L+1	3	47	48	1	1		
L+2	54	13	13	10	10		
L+3	2	48	48	1	1		
L+5	43	25	26	3	3		
L+6	21	24	25	15	15		
L+7	8	43	43	3	3		
L+8	57	2	2	20	19		

Table S10. Compositions of selected molecular orbitals of $[Ru(L-H)_2(dmso)_2]$ associated with the electronic spectral transitions.

Fig. S10. Contour plots of the molecular orbitals of $[Ru(L-H)_2(dmso)_2]$, which are associated with the electronic spectral transitions (See Table S9).

Excited Composition CI value E(eV)Oscillator λ_{theo} Assignment λ_{exp} State strength (*f*) (nm)(nm)10 $H-3 \rightarrow L$ 0.31217 3.5191 0.0812 352.32 MLCT/LLCT 368 $H-2 \rightarrow L+1$ 0.47843 MLCT/LLCT $\text{H-1} \rightarrow \text{L}$ 0.29867 LMCT $H \rightarrow L+1$ MLCT/LLCT 0.25777 21 $H-5 \rightarrow L$ 0.16977 0.0783 285.72 301 4.3393 MLCT/LLCT $H-5 \rightarrow L+2$ 0.10364 LMCT/LLCT $H-4 \rightarrow L$ 0.44230 MLCT/LLCT $H-4 \rightarrow L+2$ 0.37961 MLCT/LLCT $H \rightarrow L+2$ LMCT/LLCT 0.21509 $H \rightarrow L+4$ 0.20806 MLCT 48 5.1433 241.06 LLCT/MLCT 224 $\text{H-11} \rightarrow \text{L}$ 0.35133 0.0145 $H-8 \rightarrow L+2$ 0.17869 LMCT/ILCT $H-5 \rightarrow L+2$ LMCT/LLCT 0.10853 $H-3 \rightarrow L+5$ 0.18709 MLCT/LLCT $H-3 \rightarrow L+6$ 0.30032 MLCT/ LLCT $H-2 \rightarrow L+2$ 0.10998 LLCT /LMCT/ILCT $H-2 \rightarrow L+7$ 0.36800 MLCT/LLCT $H-2 \rightarrow L+8$ 0.13372 LLCT/LMCT/ILCT

Table S11. Computed parameters from TDDFT calculations on $[Ru(L-Cl)_2(dmso)_2]$ for electronic spectral properties in dichloromethane solution.

% Contribution	Fragments					
of fragments to	Ru	L-OCH ₃ (1)	L-OCH ₃ (2)	DMSO (1)	DMSO (2)	
HOMO (H)	17	41	40	1	1	
H-1	0	49	49	1	1	
H-2	45	26	27	1	1	
H-3	52	23	23	1	1	
H-4	60	16	16	4	4	
H-5	11	43	44	1	1	
H-8	28	20	20	16	16	
H-11	18	17	17	24	24	
LUMO (L)	4	48	48	0	0	
L+1	3	48	48	1	0	
L+2	52	14	14	10	10	
L+4	2	48	48	1	1	
L+5	35	30	30	3	2	
L+6	29	26	26	10	10	
L+7	8	43	43	3	3	
L+8	50	12	12	13	13	

Table S12. Compositions of selected molecular orbitals of $[Ru(L-Cl)_2(dmso)_2]$ associated with the electronic spectral transitions.

Fig. S11. Contour plots of the molecular orbitals of $[Ru(L-Cl)_2(dmso)_2]$, which are associated with the electronic spectral transitions (See Table S11).

Excited	Composition	CI value	E(eV)	Oscillator	$\lambda_{ m theo}$	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
3	$H-3 \rightarrow L$	0.39991	2.3083	0.0758	537.11	MLCT/LLCT	585
	$H-2 \rightarrow L$	0.55631				MLCT/LLCT	
14	$H-3 \rightarrow L+3$	0.43733	3.1573	0.1032	392.70	MLCT/ LLCT	428
	$H-3 \rightarrow L+4$	0.14873				MLCT/LLCT	
	$H-2 \rightarrow L+3$	0.27789				MLCT/LLCT	
	$H-1 \rightarrow L+2$	0.40105				LLCT/LMCT	
	$H \rightarrow L+2$	0.11966				MLCT/LLCT	
27	$H-8 \rightarrow L$	0.69257	3.7463	0.0036	330.95	LLCT/MLCT	336
52	$H-7 \rightarrow L+2$	0.10258	4.5465	0.0358	272.70	LLCT/ MLCT	266
	$H-6 \rightarrow L+1$	0.34118				LLCT/LMCT	
	$H-6 \rightarrow L+2$	0.23555				LLCT/LMCT	
	$H-5 \rightarrow L+3$	0.31180				ILCT/LMCT	
	$H-5 \rightarrow L+4$	0.15936				ILCT/LMCT	
	$H-3 \rightarrow L+8$	0.28652				MLCT/ILCT	
	$H-2 \rightarrow L+8$	0.27896				MLCT/LLCT	
155	$H-10 \rightarrow L+6$	0.13321	6.4047	0.0771	193.58	LMCT/LLCT	234
	$H-5 \rightarrow L+10$	0.12661				LMCT/LLCT	
	$H-1 \rightarrow L+16$	0.62420				LLCT/LMCT	

Table S13. Computed parameters from TDDFT calculations on $[Ru(L-OCH_3)_2(bpy)]$ for electronic spectral properties in dichloromethane solution.

% Contribution	Fragments				
of fragments to	Ru	L-OCH ₃ (1)	L-OCH ₃ (2)	bpy	
HOMO (H)	37	30	30	3	
H-1	1	50	49	0	
H-2	55	21	21	3	
H-3	54	17	17	12	
H-5	3	49	48	0	
H-6	1	49	50	0	
H-7	23	35	35	7	
H-8	23	36	36	5	
H-10	0	50	50	0	
LUMO (L)	7	1	1	91	
L+1	4	1	1	94	
L+2	3	0	0	97	
L+3	4	48	48	0	
L+4	4	48	47	1	
L+6	7	46	46	1	
L+8	46	20	19	15	
L+10	73	13	13	1	
L+16	2	35	35	28	

Table S14. Compositions of selected molecular orbitals of $[Ru(L-OCH_3)_2(bpy)]$ associated with the electronic spectral transitions.

Fig. S12. Contour plots of the molecular orbitals of $[Ru(L-OCH_3)_2(bpy)]$ which are associated with the electronic spectral transitions (See Table S13).

Table S15. Computed parameters from TDDFT calculations on $[Ru(L-OCH_3)_2(phen)]$ for electronic spectral properties in dichloromethane solution.

Excited	Composition	CI value	E (eV)	Oscillator	λ_{theo}	Assignment	λ_{exp}
State				strength (f)	(nm)		(nm)
7	$H-3 \rightarrow L$	0.46170	2.4477	0.1421	506.54	MLCT/LLCT	563
	$H-2 \rightarrow L$	0.41324				MLCT/LLCT	
	$H-1 \rightarrow L+1$	0.28254				LLCT/LMCT	
	$H \rightarrow L+1$	0.13857				LLCT/MLCT	
16	$H-3 \rightarrow L+2$	0.37172	3.2560	0.0082	380.79	MLCT/ LLCT	405
	$H-2 \rightarrow L+2$	0.18283				MLCT/LLCT	
	$H-2 \rightarrow L+4$	0.10159				MLCT/LLCT	
	$H-1 \rightarrow L+3$	0.50468				LLCT/LMCT	
	$H \rightarrow L+3$	0.17454				MLCT	
30	$H-8 \rightarrow L$	0.62869	3.7849	0.0025	327.58	LLCT/MLCT	334
	$H-6 \rightarrow L+1$	0.29257				LLCT/LMCT	
		0.54545	4 00 50	0.6004	25605		2.00
//0	$H-12 \rightarrow L$	0.54547	4.8252	0.6994	256.95	ILCT	266
	$H-12 \rightarrow L+4$	0.12438				LLCT/LMCT	
	$H-11 \rightarrow L+1$	0.26289				LMCT/LLCT	
	$H-9 \rightarrow L+1$	0.14407				LLCT /LMCT	
	$H-8 \rightarrow L+4$	0.17899				MLCT/LLCT	
	$H-7 \rightarrow L+1$	0.12295				LLCT/MLCT	
157	$H-10 \rightarrow L+6$	0.31295	6.2786	0.1044	197.47	ILCT	231
	$H-9 \rightarrow L+5$	0.59951				LLCT/LMCT	
			1		1		

% Contribution	Fragments				
of fragments to	Ru	L-OCH ₃ (1)	L-OCH ₃ (2)	phen	
HOMO (H)	36	31	31	2	
H-1	1	49	49	1	
H-2	55	21	21	3	
H-3	55	17	17	11	
H-6	1	50	49	0	
H-7	21	35	35	9	
H-8	23	36	36	5	
H-9	0	50	49	1	
H-10	0	50	50	0	
H-11	4	4	3	89	
H-12	1	1	0	98	
LUMO (L)	2	0	0	98	
L+1	8	1	1	90	
L+2	3	10	10	77	
L+3	5	38	38	19	
L+4	4	47	48	1	
L+5	1	1	0	98	
L+6	1	49	49	1	

Table S16. Compositions of selected molecular orbitals of $[Ru(L-OCH_3)_2(phen)]$ associated with the electronic spectral transitions.

Fig. S13. Contour plots of the molecular orbitals of $[Ru(L-OCH_3)_2(phen)]$ which are associated with the electronic spectral transitions (See **Table S15**).

Fig. S14. Cyclic voltammogram of $[Ru(L-CH_3)_2(dmso)_2]$ in acetonitrile solution (0.1 M TBHP) at a scan rate of 100 mVs⁻¹.

Fig. S15. Least squares plot of E_{pa} values of (a) Ru(II)-Ru(III) oxidation vs 2σ and (b) Ru(III)-Ru(IV) oxidation vs 2σ .

complex	[Ru(L-OCH ₃) ₂ (dmso) ₂]	$[Ru(L-CH_3)_2(dmso)_2]$
empirical formula	$C_{28}H_{34}N_4O_4RuS_2$	$C_{28}H_{34}N_4O_2RuS_2$
formula weight	655.78	623.78
crystal system	Monoclinic	Monoclinic
space group	P2 ₁ /c	P2 ₁ /c
<i>a</i> (Å)	11.261(6)	9.9413(11)
<i>b</i> (Å)	14.816(8)	21.144(2)
<i>c</i> (Å)	17.804(9)	13.6997(14)
α (°)	90	90
β (°)	105.319(15)	101.252(3)
γ (°)	90	90
$V(Å^3)$	2865(3)	2824.3(5)
Ζ	4	4
$D_{\rm calcd}/{ m g~cm^{-3}}$	1.520	1.467
F (000)	1352	1288
crystal size (mm)	$0.28 \times 0.32 \times 0.36$	$0.24 \times 0.38 \times 0.42$
<i>T</i> (K)	293	273
μ (mm ⁻¹)	0.734	0.735
R1 ^a	0.0501	0.0298
wR2 ^b	0.1453	0.0829
GOF ^c	1.148	1.084

Table S17. Crystallographic	data for [Ru	(L-OCH ₂) ₂ (dmso)) and [Ru(L-CH ₂) ₂ (dm	lso)-1
rabic Str. Crystanographic	uala foi filla		j_2 and \lfloor		13072]

^{*a*} R1 = $\Sigma || F_o | - |F_c|| / \Sigma |F_o|.$

 ${}^{b} wR2 = [\Sigma \{w(F_{o}{}^{2}-F_{c}{}^{2})^{2}\} / \Sigma \{w(F_{o}{}^{2})\}]^{1/2}.$

 c GOF = $[\Sigma(w(F_{o}^{2}-F_{c}^{2})^{2})/(M-N)]^{1/2}$, where M is the number of reflections and N is the number of parameters refined.

complex	[Ru(L-H) ₂ (dmso) ₂]	[Ru(L-Cl) ₂ (dmso) ₂]
empirical formula	$C_{26}H_{30}N_4O_2RuS_2$	$C_{26}H_{28}Cl_2N_4O_2RuS_2$
formula weight	595.73	664.63
crystal system	Monoclinic	Monoclinic
space group	C2/c	C2
<i>a</i> (Å)	14.9301(12)	16.0714(13)
<i>b</i> (Å)	12.2534(10)	10.2764(8)
<i>c</i> (Å)	14.5416(12)	8.3434(7)
α (°)	90	90
β (°)	97.136(2)	95.284(2)
γ (°)	90	90
$V(Å^3)$	2639.7(4)	1372.11(19)
Z	4	2
$D_{ m calcd}$ /mg m ⁻³	1.499	1.609
F (000)	1224	676
crystal size (mm)	$0.11 \times 0.22 \times 0.31$	$0.20 \times 0.24 \times 0.32$
<i>T</i> (K)	273	273
μ (mm ⁻¹)	0.783	0.950
R1 ^a	0.0355	0.0137
wR2 ^b	0.0932	0.0362
GOF ^c	1.105	1.029

Table S18. Crystallographic data for [Ru(L-H)₂(dmso)₂] and [Ru(L-Cl)₂(dmso)₂].

^{*a*} R1 = $\Sigma \mid \mid \mathbf{F}_{o} \mid - \mid \mathbf{F}_{c} \mid \mid / \Sigma \mid \mathbf{F}_{o} \mid$.

 ${}^{b} wR2 = [\Sigma \{w(F_{o}{}^{2}\text{-}F_{c}{}^{2})^{2}\} / \Sigma \{w(F_{o}{}^{2})\}]^{1/2}.$

 c GOF = $[\Sigma(w(F_{o}^{2}-F_{c}^{2})^{2})/(M-N)]^{1/2}$, where M is the number of reflections and N is the number of parameters refined.

Fig. S16. Mass spectrum of [Ru(L-CH₃)₂(dmso)₂].