Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

New Journal of Chemistry

Iodination of Antipyrine with [N-I-N]⁺ and Carbonyl Hypoiodite Iodine(I) Complexes

Laura M. E. Wilson,^a Kari Rissanen,^{a*} and Jas S. Ward^{a*}

^a University of Jyvaskyla, Department of Chemistry, Jyväskylä 40014, Finland.

E-mail: kari.t.rissanen@jyu.fi, james.s.ward@jyu.fi

Contents	
Synthesis and Characterisation	S2
General Considerations	S2
Nomenclature Key	S2
Synthesis of Iodine(I) Species	S3
The ¹⁵ N Chemical Shift table	S6
Reactivity Studies	S7
NMR Spectra	S8
Photo and NMR spectra of an old sample of $[1-I-1]BF_4$ (Barluenga's reagent)	S8
[2-I-2]SbF ₆ , [2-I-2]OTf, [3-I-3]PF ₆ , [4-I-4]PF ₆ , [5-I-5]PF ₆ , antipyrine, and iodo-antipyrine	S12
References	S26

Synthesis and Characterisation

General Considerations

All reagents and solvents were obtained from commercial suppliers and used without further purification, except for CH₂Cl₂ used for the reactivity studies which was dried by passing degassed solvent through activated alumina columns (MBraun SPS-800 Series solvent purification system), and PhC(O)OAg which was prepared according to a literature procedure.¹ For structural NMR assignments, ¹H NMR and ¹H-¹⁵N HMBC correlation spectra were recorded on a Bruker Avance III 500 MHz spectrometer at 25°C in CD₂Cl₂. Chemical shifts are reported on the δ scale in ppm using the residual solvent signal as internal standard (CH₂Cl₂ in CD₂Cl₂: δ_{H} 5.32), or for ¹H-¹⁵N NMR spectroscopy, to an external CD₃NO₂ standard. For the ¹H NMR spectroscopy, each resonance was assigned according to the following conventions: chemical shift (δ) measured in ppm, observed multiplicity, observed coupling constant (*J* Hz), and number of hydrogens. Multiplicities are denoted as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad).

The single crystal X-ray data for [2-I-2]SbF₆, [4-I-4]PF₆, and iodo-antipyrine were collected at 120 K using an Agilent SuperNova dual wavelength diffractometer with an Atlas detector using mirror-monochromated Cu-K α (λ = 1.54184 Å) radiation. The single crystal X-ray data for [3-I-3]PF₆ was collected at 170 K using Bruker-Nonius Kappa CCD diffractometer with an APEX-II detector with graphite-monochromatised Mo-K α (λ = 0.71073 Å) radiation. The program COLLECT² was used for the data collection and DENZO/SCALEPACK³ for the data reduction. All structures were solved by intrinsic phasing (SHELXT)⁴ and refined by full-matrix least squares on *F*² using Olex2,⁵ utilising the SHELXL module.⁶ Anisotropic displacement parameters were assigned to non-H atoms and isotropic displacement parameters of the ir parent atoms with U₁₅₀(H) = 1.2 U_{eq}(aromatic) or U₁₅₀(H) = 1.5 U_{eq}(alkyl) of their respective parent atoms. The X-ray single crystal data and CCDC numbers of all new structures are included below.

The following abbreviations are used: DCM = dichloromethane, DIPE = diisopropylether, DMAP = 4dimethylaminopyridine, MeCN = acetonitrile, 4-Mepy = 4-methylpyridine, OTf = trifluoromethanesulfonate (triflate) anion, py = pyridine.

Nomenclature Key

pyridine (py)	1
4-dimethylaminopyridine (DMAP)	2
4-methylpyridine (4-Mepy)	3
methyl pyridine-4-carboxylate (4-nico)	4
4-cyanopyridine (4-CNpy)	5

Synthesis of Iodine(I) Species

All iodine(I) complexes were prepared using the same quantitative general methods, which are given below using [1-I-1]BF₄ as an example.

 $[I(pyridine)_2]BF_4$ ([1-I-1]BF_4): A solution of pyridine (1; 0.121 mL, 1.5 mmol) in DCM (7 mL) was added to a solution of AgBF_4 (146 mg, 0.75 mmol) in MeCN (2.5 mL) to give a colourless solution that was stirred for 15 minutes. I₂ (190 mg, 0.75 mmol) was added as a DCM (2 mL) solution to give a peach-coloured solution with a yellow precipitate once all the I₂ had been introduced. After being stirred for 60 minutes, the reaction was filtered to remove the yellow precipitate and the product was precipitated from the filtrate with petroleum ether (40-60°C) to give a white solid. The solid was sonicated in pentane (3 × 10 mL) to remove excess I₂, and further repeated as necessary until the filtrate was colourless. The product was dried under reduced pressure to give a white solid (189.1 mg, 0.51 mmol, 68%). The NMR spectra for this complex matched those previously reported.⁷

Old sample (~2 years) of $[I(pyridine)_2]BF_4$ ([**1**-I-**1**]BF₄): Found by ¹H NMR integration to contain a 70% impurity. ¹H NMR (500 MHz, CD₂Cl₂) δ 8.78 (dd, *J* = 6.2, 1.3 Hz, 4H, [**1**-I-**1**]BF₄), 8.60 (dd, *J* = 5.9, 1.4 Hz, 2.8H, impurity), 8.22 (tt, *J* = 7.8, 1.3 Hz, 2H, [**1**-I-**1**]BF₄), 7.97 - 7.89 (m, 1.4H, impurity), 7.63 (dd, *J* = 7.6, 6.4 Hz, 4H, [**1**-I-**1**]BF₄), 7.51 - 7.42 (m, 2.8H, impurity); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -174.5 ([**1**-I-**1**]BF₄), -103.2 (impurity).

 $[I(pyridine)_2]PF_6$ ($[1-I-1]PF_6$): Prepared the same as $[1-I-1]BF_4$ using AgPF₆ (316 mg, 1.25 mmol) instead of AgBF₄. The product was precipitated as a white solid (409.9 mg, 0.95 mmol, 76%). The NMR spectra for this complex matched those previously reported.⁸

[I(DMAP)₂]BF₄ ([**2**-I-**2**]BF₄): Prepared the same as [**1**-I-**1**]BF₄ using AgBF₄ (117 mg, 0.6 mmol) and DMAP (**2**; 147 mg, 1.2 mmol) instead of pyridine. The product was precipitated as a white solid (168.6 mg, 0.37 mmol, 61%). ¹H NMR (500 MHz, CD₂Cl₂) δ 8.05 (d, *J* = 6.3 Hz, 4H), 6.50 (d, *J* = 7.2 Hz, 4H), 3.09 (s, 12H); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -215.9 (pyridinic), -306.4 (NMe₂).

 $[I(DMAP)_2]PF_6$ ([2-I-2]PF_6): Prepared the same as [1-I-1]BF_4 using AgPF_6 (316 mg, 1.25 mmol) and DMAP (2; 305 mg, 2.5 mmol) instead of AgBF_4 and pyridine, respectively. The product was precipitated as a white solid (574.9 mg, 1.1 mmol, 89%). The NMR spectra for this complex matched those previously reported.⁸

[I(DMAP)₂]SbF₆ ([**2**-I-**2**]SbF₆): Prepared the same as [**1**-I-**1**]BF₄ using AgSbF₆ (206 mg, 0.6 mmol) and DMAP (**2**; 147 mg, 1.2 mmol) instead of AgBF₄ and pyridine, respectively. The product was precipitated as a white solid (182.8 mg, 0.3 mmol, 50%). ¹H NMR (500 MHz, CD₂Cl₂) δ 8.05 (d, *J* = 6.9 Hz, 4), 6.49 (d, *J* = 6.9 Hz, 4H), 3.10 (s, 12H); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -215.8 (pyridinic), -306.6 (NMe₂). Crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution of the complex vapour diffused with DIPE. Crystal data for [**2**-I-**2**]SbF₆: CCDC-2208422, [C₁₄H₂₀IN₄]SbF₆, M = 606.99, colourless block, 0.05 x 0.08 x 0.10 mm, monoclinic, space group *C*2/*m*, a =

25.9324(15) Å, b = 10.7459(7) Å, c = 8.4481(5) Å, β = 92.962(6)°, V = 2351.1(2) Å³, Z = 4, D_{calc} = 1.715 gcm⁻³, F000 = 1160, μ = 20.10 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.6°, 2435 total reflections, 2176 with I_o > 2 σ (I_o), R_{int} = 0.031, 5294 data, 159 parameters, no restraints, GooF = 1.03, 0.50 < d $\Delta\rho$ < -1.07 eÅ⁻³, R[F^2 > 2 σ (F^2)] = 0.031, wR(F^2) = 0.083.

[I(DMAP)₂]OTf ([**2**-I-**2**]OTf): Prepared the same as [**1**-I-**1**]BF₄ using AgOTf (321 mg, 1.25 mmol) and DMAP (**2**; 306 mg, 2.5 mmol) instead of AgBF₄ and pyridine, respectively. The product was precipitated as a white solid (333.4 mg, 0.64 mmol, 51%). ¹H NMR (500 MHz, CD₂Cl₂) δ 8.06 (d, *J* = 7.2 Hz, 4H), 6.51 (d, *J* = 7.0 Hz, 4H), 3.10 (s, 12H); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -215.8 (pyridinic), -306.5 (NMe₂).

[I(4-Mepy)₂]PF₆ ([**3**-I-**3**]PF₆): Prepared the same as [**1**-I-**1**]BF₄ using AgPF₆ (190 mg, 0.75 mmol) and 4-Mepy (**3**; 146 μl, 1.50 mmol) instead of AgBF₄ and pyridine, respectively. The product was precipitated as a white solid (195.0 mg, 0.42 mmol, 57%). ¹H NMR (500 MHz, CD₂Cl₂) δ 8.54 (d, *J* = 6.3 Hz, 4H), 7.39 (d, *J* = 5.8 Hz, 4H), 2.52 (s, 6H); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -182.2. Crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution vapour diffused with pentane. Crystal data for [**3**-I-**3**]PF₆: CCDC-2064895, [C₁₂H₁₄IN₂]PF₆, M = 458.12, colourless block, 0.08 x 0.16 x 0.36 mm³, orthorhombic, space group *Pbca*, a = 11.6037(5) Å, b = 12.4587(3) Å, c = 22.3220(9) Å, V = 3227.0(2) Å³, Z = 8, D_{calc} = 1.886 gcm⁻³, F000 = 1776, μ = 2.14 mm⁻¹, T = 170(1) K, θ_{max} = 27.9°, 3542 total reflections, 2665 with I₀ > 2σ(I₀), R_{int} = 0.054, 3542 data, 201 parameters, no restraints, GooF = 1.13, 0.66 < dΔp < -0.80 eÅ⁻³, *R*[*F*² > 2σ(*F*²)] = 0.040, *wR*(*F*²) = 0.122.

[I(4-nico)₂]PF₆ ([4-I-4]PF₆): A solution of methyl pyridine-4-carboxylate (4; 1.16 µl, 2.00 mmol) in DCM (10 mL) was added to a solution of AgPF₆ (253 mg, 1.00 mmol) in MeCN (3.0 mL) to give a colourless solution that was stirred for 15 minutes. I₂ (254 mg, 1.0 mmol) was added as a DCM (16 mL) solution to give an orange-coloured solution with a yellow precipitate once all the I₂ had been introduced. After being stirred for 60 minutes, the reaction was filtered to remove the yellow precipitate and the product was precipitated from the ruby red filtrate with petroleum ether (40-60°C) to give an off-white solid. The solid was sonicated in pentane (3 × 10 mL) to remove excess I₂, and further repeated as necessary until the filtrate was colourless. The product was dried under reduced pressure to give an off-white solid (430.9 mg, 0.79 mmol, 79%). ¹H NMR (500 MHz, CD₂Cl₂) δ 8.94 (d, *J* = 5.7 Hz, 4H), 8.11 (d, *J* = 5.5 Hz, 4H), 4.02 (s, 6H); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -167.4. Crystals suitable for single crystal X-ray diffraction were obtained from a DCM solution vapour diffused with DIPE. Crystal data for [4-I-4]PF₆: CCDC-2208423, [C₁₄H₁₄IN₂O₄]PF₆, M = 546.14, colourless block, 0.11 x 0.12 x 0.16 mm³, monoclinic, space group *P*2₁/c, a = 15.7548(5) Å, b = 9.8035(3) Å, c = 30.8925(8) Å, β = 92.272(2)°, V = 4767.7(2) Å³, Z = 10, D_{calc} = 1.902 gcm⁻³, F000 = 2660, μ = 14.77 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.4°, 9730 total reflections, 6316 with I₀ > 2 σ (I₀), R_{int} = 0.037, 9730 data, 639 parameters, 133 restraints, GooF = 1.09, 2.30 < d\Delta\rho < -2.02 eÅ⁻³, *R*[*F*² > 2 σ (*F*²]] = 0.067, *wR*(*F*²) = 0.210.

 $[I(4-CNpy)_2]PF_6$ ([5-I-5]PF₆): A solution of 4-cyanopyridine (5; 156 mg, 1.5 mmol) in DCM (7 mL) was added to a solution of AgPF₆ (190 mg, 0.75 mmol) in MeCN (2.5 mL) and was stirred for 15 minutes. I₂ (190 mg, 0.75 mmol)

was added as a DCM (10 mL) solution to give an orange-coloured solution with a yellow precipitate once all the l₂ had been introduced. After being stirred for 60 minutes, the reaction was filtered to remove the yellow precipitate and the product was precipitated from the ruby red filtrate with petroleum ether (40-60°C) to give an off-white solid. The solid was sonicated in pentane (3 × 10 mL) to remove any excess l₂, and further repeated as necessary until the filtrate was colourless. The product was dried under reduced pressure to give an off-white solid (173.3 mg, 0.36 mmol, 48%). ¹H NMR (500 MHz, CD₃CN) δ 8.94 (s.br, 4H), 7.91 (s.br, 4H); no peaks observed in the ¹H-¹⁵N HMBC NMR studies due to the broad ¹H NMR resonances. Crystals suitable for single crystal X-ray diffraction were obtained by evaporation of a DCM solution of [5-I-5]PF₆. Crystal data for [5-I-5]PF₆: CCDC-2208424, 3[C₁₂H₈IN₄-]PF₆·CH₂Cl₂, M = 1525.21, colourless block, 0.40 x 0.50 x 0.50 mm³, triclinic, space group *P*-1 (No. 2), a = 10.6696(3) Å, b = 13.9953(3) Å, c = 18.4479(4) Å, α = 81.771(1)°, β = 75.316(1)°, γ = 78.793(1)°, V = 2601.11(11) Å³, Z = 2, D_{calc} = 1.947 gcm⁻³, F000 = 1464, μ = 2.11 mm⁻¹, T = 170(1) K, θ_{max} = 28.3°, 11442 total reflections, 9156 with l_o > 2 σ (*F*²)] = 0.043, *wR*(*F*²) = 0.100.

PhC(O)O–I–DMAP (PhC(O)OI–**2**): A solution of DMAP (**2**; 122 mg, 1.0 mmol) in DCM (2 mL) was added to a suspension of PhC(O)OAg (229 mg, 1.0 mmol) in DCM (7 mL) and was stirred for 15 minutes. I_2 (254 mg, 1.0 mmol) was added as a DCM (5 mL) solution to give a peach-coloured solution with a yellow precipitate once all the I_2 had been introduced. After being stirred for 20 minutes, the reaction was filtered to remove the yellow precipitate and the product was precipitated from the filtrate with diethyl ether to give a white solid. The solid was sonicated in pentane (3 × 10 mL) to remove excess I_2 , and further repeated as necessary until the filtrate was colourless. The product was dried under reduced pressure to give a white solid (244.9 mg, 0.66 mmol, 66%). The NMR spectra for this compound matched those previously reported.¹

Antipyrine: ¹H NMR (500 MHz, CD₂Cl₂) δ 7.46 (td, *J* = 7.6, 1.7 Hz, 2H), 7.36 (dd, *J* = 8.5, 1.1 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 1H), 5.29 (s, 1H), 3.03 (s, 3H), 2.21 (s, 3H); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -246.2, -197.7.

lodo-antipyrine: ¹H NMR (500 MHz, CD₂Cl₂) δ 7.48-7.34 (m, 5H), 3.12 (s, 3H), 2.32 (s, 3H); ¹⁵N NMR (500 MHz, CD₂Cl₂) δ -241.5, -201.5. Crystals suitable for single crystal X-ray diffraction were obtained by sublimation of the compound under reduced pressure. Crystal data for iodo-antipyrine: CCDC-2208425, C₁₁H₁₁IN₂O, M = 314.12, colourless plate, 0.03 x 0.08 x 0.15 mm, trigonal, space group *R*-3, a = 27.1958(6) Å, c = 7.8944(2) Å, V = 5056.5(3) Å³, Z = 18, D_{calc} = 1.857 gcm⁻³, F000 = 2736, μ = 22.19 mm⁻¹, T = 120.0(1) K, θ_{max} = 76.6°, 2223 total reflections, 2147 with I_o > 2σ(I_o), R_{int} = 0.038, 2223 data, 138 parameters, no restraints, GooF = 1.05, 0.33 < dΔρ < -0.43 eÅ⁻³, *R*[*F*² > 2σ(*F*²)] = 0.016, *wR*(*F*²) = 0.041.

Figure S1: The X-ray crystal structure of iodo-antipyrine (thermal ellipsoids at 50% probability). Colour key: purple = iodine, red = oxygen, blue = nitrogen, dark grey = carbon, white = hydrogen.

The ¹⁵N Chemical Shift table

Table S1: The ¹⁵N NMR chemical shifts (in CD₂Cl₂), determined by ¹H-¹⁵N HMBC studies, of all iodine(I) complexes (in ppm).

Complex	Pyridinic nitrogen (δ _N)
[1 -I- 1]BF ₄	-175.17
[1 -I- 1]PF ₆	-174.8 ⁸
[2 -I- 2]BF ₄	-215.9
[2 -I- 2]PF ₆	-216.1 ⁸
[2 -I- 2]SbF ₆	-215.8
[2 -I- 2]OTf	-215.8
[3 -I- 3]PF ₆	-182.2
[4 -I- 4]PF ₆	-167.4
[5 -I- 5]PF ₆	(not observed)
PhC(O)OI- 2	-209.5 ¹

Reactivity Studies

The general procedure for testing the reactivity of the iodine(I) complexes, following prior studies and performed in triplicate,⁹ was as follows:

Antipyrine (18.8 mg, 0.1 mmol) was added to a CH_2Cl_2 (5 mL) solution of the iodine(I) complex (0.1 mmol) being tested and stirred for 2 hours or 22 hours, followed by an aqueous work-up consisting of washing with a saturated NaHCO₃ solution (4 × 25 mL). The iodo-antipyrine product was extracted with CH_2Cl_2 , dried over anhydrous Na_2SO_4 , filtered, then isolated under reduced pressure as a white solid and the yield calculated.

Complex	Average Antipyrine to Iodo-antipyrine
	Conversion (%)
l ₂	55
I ₂ (22 hours)	90
[1-I-1]BF ₄	93
[1 -I- 1]PF ₆	76
[2-I-2]BF ₄	50
[2 -I- 2]BF ₄ (22 hours)	78
[2 -I- 2]PF ₆	58
[2-I-2]PF ₆ (22 hours)	79
[2 -I- 2]SbF ₆	49
[2 -I- 2]OTf	63
[3 -I- 3]PF ₆	77
[4 -I- 4]PF ₆	85
[5 -I- 5]PF ₆	89
PhC(O)OI- 2	37
PhC(O)OI- 2 (22 hours)	68

Table S2: The average percentage conversion of antipyrine to iodo-antipyrine (after 2 hours unless otherwise stated).

NMR Spectra

Photo and NMR spectra of an old sample of [**1**-I-**1**]BF₄ (Barluenga's reagent)

Figure S2: Photographic comparison of a freshly prepared sample of [1-I-1]BF₄ (Barluenga's reagent; left) and an old sample after approximately two years stored under dry conditions in a desiccator (right).

Figure S3: The ¹H NMR spectrum of an old sample of $[1-I-1]BF_4$ (~2 years) in CD₂Cl₂.

Figure S4: The ¹H-¹⁵N HMBC spectrum of an old sample of complex [**2**-I-**2**]BF₄ (~2 years) in CD_2Cl_2 .

Figure S5: The ¹H NMR spectrum of complex [**2**-I-**2**]BF₄ in CD₂Cl₂.

[2-I-2]SbF₆, [2-I-2]OTf, [3-I-3]PF₆, [4-I-4]PF₆, [5-I-5]PF₆, antipyrine, and iodo-antipyrine

Figure S6: The ¹H-¹⁵N HMBC spectrum of complex [**2**-I-**2**]BF₄ in CD₂Cl₂.

Figure S7: The ¹H NMR spectrum of complex [**2**-I-**2**]SbF₆ in CD₂Cl₂

.

Figure S8: The ${}^{1}H{}^{15}N$ HMBC spectrum of complex [2-I-2]SbF₆ in CD₂Cl₂.

Figure S9: The ¹H NMR spectrum of complex [**2**-I-**2**]OTf in CD_2CI_2 .

Figure S10: The ¹H-¹⁵N HMBC spectrum of complex [**2**-I-**2**]OTf in CD₂Cl₂.

Figure S11: The ¹H NMR spectrum of complex [**3**-I-**3**]PF₆ in CD_2Cl_2 .

Figure S12: The ${}^{1}H{}^{15}N$ HMBC spectrum of complex [**3**-I-**3**]PF₆ in CD₂Cl₂.

Figure S13: The ¹H NMR spectrum of complex [**4**-I-**4**]PF₆ in CD₂Cl₂.

Figure S14: The ¹H-¹⁵N HMBC spectrum of complex [**4**-I-**4**]PF₆ in CD₂Cl₂.

Figure S15: The ¹H NMR spectrum of complex [**5**-I-**5**]PF₆ in CD₂Cl₂.

Figure S16: The ¹H NMR spectrum of antipyrine in CD₂Cl₂.

Figure S17: The ¹H-¹⁵N HMBC spectrum of antipyrine in CD₂Cl₂.

Figure S18: The ¹H NMR spectrum of iodo-antipyrine in CD₂Cl₂.

Figure S19: The ¹H-¹⁵N HMBC spectrum of iodo-antipyrine in CD₂Cl₂.

References

- Yu, S.; Ward, J. S.; Truong, K.-N.; Rissanen, K. Carbonyl Hypoiodites as Extremely Strong Halogen Bond Donors. *Angew. Chem. Int. Ed.* 2021, 60 (38), 20739–20743. https://doi.org/https://doi.org/10.1002/anie.202108126.
- (2) Hooft, R. W. W.; Nonius. Collect. Nonius BV: Delft, The Netherlands 1998.
- (3) Otwinowski, Z.; Minor, W. B. T.-M. in E. [20] Processing of X-Ray Diffraction Data Collected in Oscillation Mode. In *Macromolecular Crystallography Part A*; Academic Press, 1997; Vol. 276, pp 307–326. https://doi.org/https://doi.org/10.1016/S0076-6879(97)76066-X.
- (4) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. A Found. Adv.* **2015**, *71* (1), 3–8. https://doi.org/10.1107/S2053273314026370.
- (5) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystallogr.* **2009**, *42* (2), 339–341. https://doi.org/10.1107/S0021889808042726.
- (6) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Crystallogr. Sect. C, Struct. Chem.* **2015**, *71* (Pt 1), 3–8. https://doi.org/10.1107/S2053229614024218.
- Bedin, M.; Karim, A.; Reitti, M.; Carlsson, A.-C. C.; Topić, F.; Cetina, M.; Pan, F.; Havel, V.; Al-Ameri, F.; Sindelar, V.; Rissanen, K.; Gräfenstein, J.; Erdélyi, M. Counterion Influence on the N–I–N Halogen Bond. *Chem. Sci.* 2015, 6 (7), 3746–3756. https://doi.org/10.1039/C5SC01053E.
- Ward, J. S.; Fiorini, G.; Frontera, A.; Rissanen, K. Asymmetric [N–I–N]+ Halonium Complexes. *Chem. Commun.* 2020, 56 (60), 8428–8431. https://doi.org/10.1039/D0CC02758H.
- (9) Campos, P. J.; Arranz, J.; Rodríguez, M. A. α-Iodination of Enaminones with Bis(Pyridine)Iodonium(I) Tetrafluoroborate. *Tetrahedron Lett.* 1997, 38 (48), 8397–8400. https://doi.org/https://doi.org/10.1016/S0040-4039(97)10231-3.