Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## **Supporting Information**

## Biomass-derived nitrogen and sulfur co-doped sheet-like porous carbon for high-performance supercapacitors

Kun-Lang Lu<sup>a</sup>, Xian-Yong Wei<sup>a,b,c,\*</sup>, Fa-Zhan Mao<sup>a</sup>, Zhi-Juan Zhu<sup>d</sup>, Zhuang Li<sup>a</sup>, Fan Yin<sup>a</sup>, Jia-Hao Li<sup>a</sup>, Zhi-Min Zong<sup>a</sup>

<sup>a</sup> Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources and Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China

<sup>b</sup> State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, China

<sup>c</sup> State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources Jointly Built by Xinjiang Uyghur Autonomous Region and Ministry of Science and Technology, Key Laboratory of Coal Clean Conversion & Chemical Engineering Process (Xinjiang Uyghur Autonomous Region), College of Chemical Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China <sup>d</sup> Canadian Solar Sunenergy (Suqian) Co., Ltd. Suqian 223800, Jiangsu, China

\* Corresponding author.

Tel: +86-516-83885951; Fax: +86-516-83884399.

E-mail address: wei\_xianyong@163.com. (X. Y. Wei)

## **Electrode Preparation and Electrochemical Measurements**

Each working electrode was prepared by coating a mixture containing carbon material (80 wt%), polytetrafluoroethylene (10 wt%), acetylene black (10 wt%), and appropriate amount of ethanol onto nickel foam ( $1 \times 1$  cm, pressurized under 10 MPa for 5 min, and then dried overnight under vacuum at 70 °C. In the three-electrode system, saturated calomel electrode, platinum electrode, and 6 M KOH solution were used as reference electrode, counter electrode, and electrolyte, respectively. For the two-electrode configuration, symmetric supercapacitors were assembled from two identical

<sup>\*</sup> Corresponding author. Tel: +86-516-83885951; Fax: +86-516-83884399. E-*mail address*: wei xianyong@163.com.

electrodes in 6 M KOH aqueous electrolyte. GSCDC and cycling stability measurements were carried out on the CT-4000 battery testing system. CV and electrochemical impedance spectroscopy (ESI) measurements were performed using Chenhua CHI660E electrochemical workstation.

GMSC, ED, and PD were calculated using the equations:  $GMSC = I \triangle t/(m \triangle V)$ ,  $ED = GMSC \triangle V^2/7.2$ , and  $PD = 3600ED/\triangle t$ , where *I*, *t*, *m*, and  $\triangle V$  denote discharge current, discharge time, active material mass, and working voltage range, respectively.



**Fig. S1.** N<sub>2</sub> adsorption/desorption isotherms (left) and pore size distribution curves (right) of the sample.



Fig. S2. XRPES of the samples.



Fig. S3. CV curves at  $10 \text{ mV s}^{-1}$  (a), GSCDC curves at 0.5 A g<sup>-1</sup> (b), and Nyquist points (c) of the samples.

| Sample                  | $SSA (m^2 g^{-1})$ | $PV(cm^3 g^{-1})$ |           | ADDM (nm)      |
|-------------------------|--------------------|-------------------|-----------|----------------|
|                         |                    | Total             | Micropore | APDIVI (IIIII) |
| NSCDPC <sub>700-1</sub> | 1176               | 0.52              | 0.46      | 1.80           |
| NSCDPC750-1             | 1429               | 0.56              | 0.52      | 1.78           |
| NSCDPC <sub>800-1</sub> | 1213               | 0.55              | 0.47      | 2.07           |

Table S1 SSA and Pore Parameters of the Samples

| Table S2 Relati | ve Contents | of Different | Species |
|-----------------|-------------|--------------|---------|
|-----------------|-------------|--------------|---------|

| Species                            | Relative Content (%) |             |             |             |  |
|------------------------------------|----------------------|-------------|-------------|-------------|--|
| Species                            | NSCDPC750-0          | NSCDPC750-1 | NSCDPC750-2 | NSCDPC750-3 |  |
| Carbon                             |                      |             |             |             |  |
| >C=CCH-CH<                         | 48.0                 | 40.8        | 47.7        | 46.0        |  |
| >CH-N<                             | 20.6                 | 23.7        | 20.7        | 21.7        |  |
| >CH-O-                             | 9.2                  | 9.8         | 8.3         | 10.8        |  |
| >C=N-/>C=O                         | 7.0                  | 11.7        | 11.5        | 7.7         |  |
| O= <b>C</b> H-O-                   | 15.2                 | 14.0        | 11.8        | 13.8        |  |
| Oxygen                             |                      |             |             |             |  |
| >C= <b>O</b>                       | 29.1                 | 36.9        | 39.6        | 28.1        |  |
| >CH- <b>O</b> H/>CH- <b>O</b> -CH< | 57.1                 | 53.6        | 46.5        | 51.7        |  |
| -COOH/H <sub>2</sub> O             | 13.8                 | 9.5         | 13.9        | 20.2        |  |
| Nitrogen                           |                      |             |             |             |  |
| $PN^{I}$                           | -                    | 15.8        | 24.6        | 18.8        |  |
| $PN^{II}$                          | -                    | 26.9        | 25.0        | 21.1        |  |
| QN                                 | -                    | 32.1        | 33.8        | 28.2        |  |
| NOs                                | -                    | 25.2        | 16.6        | 31.9        |  |
| Sulfur                             |                      |             |             |             |  |
| S 2 <i>p</i> <sub>3/2</sub>        | 30.5                 | 13.0        | 37.6        | 37.9        |  |
| S $2p_{1/2}$                       | 28.0                 | 23.0        | 22.8        | 29.0        |  |
| >CH-SO <sub>X</sub> -CH<           | 41.5                 | 64.0        | 39.6        | 33.1        |  |