Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Crown ether-based covalent organic frameworks for CO₂ fixation

Table of Content

Section 1. Materials and Methods

Section 2. Experimental Procedures

Section 3. Solution ¹H NMR Spectra

Section 4. Chemical Stability Tests

Section 5. BET Tests

Section6. EDS Test

Section 7. Catalytic Results

Section 8. Structural Simulation

Section 9. Supporting References

Section 1. Materials and Methods

All the chemicals and solvents were purchased commercially and used without further purification, unless otherwise noted. Liquid NMR spectra were recorded on a Bruker AVANCE III HD 400 MHz. The following abbreviations were used to explain the multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets. The solid ¹³C NMR spectra were measured on JEOL JNM ECZ600R 600MHz. Powder X ray diffraction (PXRD) data were collected on Rigaku Smartlab using Cu Ka radiation at 60 kV, 220 mA power. The Brunauer-Emmett-Teller (BET) surface areas were calculated by nitrogen adsorption and desorption at 77 K using ASAP2460 and the samples were activated under vacuum before analysis. Fourier transform infrared (FT-IR) spectra were obtained on Hitachi F-2500 spectrophotometer. A Scanning Electron Microscope (SEM) images were obtained with Hitachi S-4800. The conversion was analyzed by GC.

Section 2. Experimental Procedures

2.1 Synthetic Procedures

Synthesis of B₁₈C₆:

4,4',4'',4'''-(6,7,9,10,17,18,20,21-octahydrodibenzo [b,k] [1,4,7,10,13,16] hexaoxacyclooctadecine-2,3,13,14-tetrayl) tetrabenzaldehyde (B₁₈C₆) was synthesized by using the Suzuki-Miyaura coupling reaction^[1]. Bis(3,4-dibromobenzene)-18-crown-6 (0.2 mmol), Pd(PPh₃)₄ (0.01 mmol) and Cs₂CO₃ (1.0 mmol) were dispersed in THF (5.0 mL), and stirred for 10 min. 4-Methoxycarbonylphenyl boronic acid (1.6 mmol) dissolved in methanol (3.0 mL), was added to the solution, and heated at 90°C for 48 h. After being cooled to room temperature, the reaction solution was washed by saturated brine and extracted through methylene chloride. The organic phase was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (DCM: MeOH=15:1). The yield of B₁₈C₆ was about 91%. ¹H NMR (400 MHz, DMSO-d6) δ 9.95 (s, 4H), 7.77 (d, *J* = 8.2 Hz, 8H), 7.34 (d, *J* = 8.1 Hz, 8H), 7.08 (s, 4H), 4.24 (s, 8H), 3.89 (s, 8H).

Synthesis of ETTA-B₁₈C₆-COF:

A pyrex tube (10 mL) is charged with ETTA (39.3 mg), B₁₈C₆ (77.6 mg), 1.8 mL *o*-DCB, 3.6 mL n-butanol, 0.9 mL of 6 M aqueous acetic acid. The mixture was sonicated for 30 minutes. The tube was then flash frozen at 77K and degassed by three freeze-pump-thaw cycles. The tube was sealed off and then heated at 120°C for 3 days. The resulting yellow solid was isolated by centrifugation and washed with N,N-dimethylacetamide(3×10mL), acetone(3×10mL). The powder was dried at 100 °C under vacuum overnight to afford ETTA-B₁₈C₆-COF as yellow powder in about 91% yield.

2.2 Chemical Stability Tests

Each COF sample (20mg) was immersed in 2 mL medium (DCM, THF, MeOH, 3.0 M NaOH and 1.0 M HCl) for 7 days. All the samples were isolated by centrifugation and washed with H_2O (3×10mL), then activated at 100 °C under vacuum for 12 h.

2.3 Catalytic procedures

The cycloaddition reactions were carried out in a Schlenk tube (10 mL) with a magnetic stirrer. In a typical procedure, the epoxide (1 mmol), COF (0.01 mmol) and TBAB (0.05 mmol) were added into a reaction tube. After sealing and purging with CO_2 using a balloon, the reaction tube was placed in a preheated oil bath and stirred for 24 h. After the cycloaddition reaction, the catalyst was separated from the system by filtration, and reaction mixture was analyzed by GC to

calculate the conversion of substrate.

Section 3. Solution ¹H NMR Spectra

Figure S1. ¹H NMR spectra of monomer B₁₈C₆ in DMSO.

Figure S2. PXRD profiles of ETTA-B $_{18}C_6$ -COF (yellow) after treatment for 7 days in THF

(purple), DCM (green), MeOH (blue), 3M NaOH (red) and 1M HCl (gray)

Section 5. BET Tests

Figure S3. Nitrogen adsorption and desorption isotherms at 77 K and pore size distribution

profiles for ETTA-B₁₈C₆COF

Section 6. EDS Tests

Figure S4. EDS mapping images of ETTA-B₁₈C₆-COF

Section 7. Catalytic Results

Table S1.	Catalytic	cycloaddition	of CO ₂ with	1,2-epoxy	vbutane using	ETTA-B ₁₈ C ₆ -C	OF ^a .
	2	2	_				

		\checkmark + CO ₂	COF, TI 0.1MPa,	BAB O	°	
Entry	Co-catalyst	Catalyst	Time	Temperature	Conversion ^b	Selectivity ^b
			[h]	[°C]	[%]	[%]
1	TBAB	-	24	40	38	>99
2	-	ETTA-B ₁₈ C ₆ -COF	24	40	-	-
3	TBAB	$B_{18}C_{6}$	24	40	77	>99
4	TBAB	ETTA	24	40	66	>99
5	TBAB	ETTA-B ₁₈ C ₆ -COF	24	40	90	>99
6	TBAB	ETTA-B ₁₈ C ₆ -COF	6	40	9	>99
7	TBAB	ETTA-B ₁₈ C ₆ -COF	12	40	29	>99
8	TBAB	ETTA-B ₁₈ C ₆ -COF	18	40	61	>99
9	TBAB	ETTA-B ₁₈ C ₆ -COF	30	40	92	>99
10	TBAB	ETTA-B ₁₈ C ₆ -COF	24	30	64	>99
11	TBAB	ETTA-B ₁₈ C ₆ -COF	24	50	91	>99

^aReaction conditions: 1,2-epoxybutane (1 mmol), TBAB (0.05 mmol), ETTA-B₁₈C₆-COF (0.01 mmol), CO₂ (0.1 MPa), solvent free; ^bDetermined by GC.

Figure S5. (a) Recycling catalytic test of ETTA- $B_{18}C_6$ -COF for the CO₂ cycloaddition with 1,2epoxybutane (1 mmol), solvent free, CO₂ (0.1 MPa), 40°C and 24 h. (b)PXRD curves of ETTA-

 $B_{18}C_6$ -COF before (red) and after (black) ten runs.

Table S2. Summary of reported catalytic systems for coupling of CO2 and epichlorohydrin under

Material	Condition	TOF(h ⁻¹)	Ref
Al-iPOP (0.1)/-	25°C, 0.1 Mpa, 8 h	124	ChemSusChem. 2017, 10, 2534–2541.
2,3-DhaTph (0.2)/TBAI (0.5)	110°C, 1 Mpa, 12 h	39.2	Catal. Sci. Technol. 2016, 6, 6152–6158.
PPS⊂COF-TpBpy-Cu (1.8)	40°C, 0.1Mpa, 24 h	23.9	J. Am. Chem. Soc. 2016, 138, 15790–15796.
ETTA-B ₁₈ C ₆ -COF (0.01) /TBAB (0.05)	40°C, 0.1Mpa, 24 h	3.9	This work
COFJLU7(0.5)/TBAB (5.0)	40°C, 0.1Mpa, 48 h	3.8	J. Mater. Chem. A. 2018, 6, 374–382.
Co-CMP (0.5) /TBAB (7.2)	25°C, 0.1Mpa, 48 h	3.4	Nat. Commun. 2013, 4, 1960–1965.
Pyridyl salicylimine (0.1)	100°C, 1 Mpa, 24 h	2.0	ACS Appl. Mater. Interfaces 2018, 10, 9478–9484.
Cr-MIL-101(1.2)/TBAB (3.4)	25°C, 0.8 Mpa, 48 h	1.6	Catal. 2013, 298, 179–185.
Cr(salophen) complex (2.5)/TBAB (2.5)	25°C, 0.1 Mpa, 24 h	1.6	ACS Catal. 2016, 6, 5012–5025.
USTC-253-TFA (1.0) /TBAB (6.5)	25 °C, 0.1 Mpa, 72 h	1.1	ChemSusChem. 2015, 8, 878–885.
Hf-NU-1000 (4.0) /TBAB (10)	25 °C, 0.1 Mpa, 56 h	0.1	J. Am. Chem. Soc. 2014, 136, 15861–15864.

mild/ambient conditions.

Section 8. Structural Simulation

Space group: P1 a=28.8354Å, b=14.5041Å, c=4.4406Å α=91.6676°, β=94.93919°, γ=91.86846°						
C1	0.12737	-2.45474	-0.21140			
O2	0.08770	-2.50204	-0.11154			
C3	0.09032	-2.60006	-0.12093			
C4	0.04661	-2.64122	0.01261			
C5	0.16846	-2.50062	-0.29240			
C6	0.20835	-2.45265	-0.38121			
C7	0.25100	-2.50788	-0.42512			
C8	0.24987	-2.58921	-0.59649			
С9	0.28983	-2.64311	-0.62920			
C10	0.33124	-2.61634	-0.48883			
C11	0.33214	-2.53674	-0.31217			
C12	0.29225	-2.48335	-0.27850			
C13	0.37393	-2.67042	-0.51586			
N14	0.37696	-2.74335	-0.68375			
C15	0.41879	-2.79654	-0.70111			
C16	0.42016	-2.87561	-0.88123			
C17	0.46012	-2.93048	-0.88973			
C18	0.49892	-2.90872	-0.71160			
C19	0.49752	-2.82787	-0.53801			
C20	0.45815	-2.77226	-0.53334			
C21	0.54171	-2.96762	-0.70378			
C22	0.58640	-2.91549	-0.67732			
C23	0.53997	-3.06270	-0.70378			
C24	0.62193	-2.94403	-0.48231			
C25	0.66268	-2.89271	-0.45368			
C26	0.66810	-2.81029	-0.61243			
C27	0.63223	-2.77961	-0.80077			
C28	0.59195	-2.83196	-0.83336			
N29	0.70936	-2.75719	-0.56860			
C30	0.58276	-3.12160	-0.71158			
C31	0.49528	-3.11482	-0.67733			
C32	0.45974	-3.08629	-0.48233			
C33	0.41899	-3.13760	-0.45371			
C34	0.41358	-3.22002	-0.61247			
C35	0.44944	-3.25071	-0.80080			
C36	0.48973	-3.19836	-0.83337			
C37	0.58416	-3.20244	-0.53797			
C38	0.62352	-3.25806	-0.53328			
C39	0.66289	-3.23377	-0.70104			
C40	0.66152	-3.15470	-0.88116			
C41	0.62156	-3.09983	-0.88969			

Table S3a. Atomic space position of the AA-stacking mode of ETTA-B₁₈C₆-COF.

N42	0.70472	-3.28697	-0.68366
N43	0.37231	-3.27312	-0.56865
C44	0.36524	-3.35196	-0.69817
C45	0.70775	-3.35989	-0.51576
C46	0.71643	-2.67835	-0.69810
C47	0.75844	-2.62468	-0.63814
C48	0.75044	-3.41398	-0.48872
C49	0.32324	-3.40563	-0.63822
C50	0.79342	-2.65873	-0.45010
C51	0.83155	-2.60364	-0.37863
C52	0.83530	-2.5135	-0.49212
C53	0.80106	-2.48184	-0.69123
C54	0.76268	-2.53653	-0.76155
C55	0.74954	-3.49358	-0.31207
C56	0.78943	-3.54696	-0.27840
C57	0.83068	-3.52243	-0.42501
C58	0.83181	-3.44110	-0.59637
C59	0.79185	-3.38721	-0.62908
C60	0.28825	-3.37158	-0.45017
C61	0.25012	-3.42667	-0.37871
C62	0.24637	-3.51681	-0.49219
C63	0.28061	-3.54847	-0.69131
C64	0.31899	-3.49378	-0.76163
C65	0.87490	-2.45427	-0.39733
C66	0.87333	-3.57767	-0.38111
C67	0.20678	-3.57604	-0.39740
C68	0.91592	-2.49906	-0.31164
C69	0.95539	-2.45055	-0.21593
C70	0.95431	-3.57558	-0.21133
C71	0.91323	-3.52970	-0.29230
C72	0.16576	-3.53126	-0.31166
C73	0.12629	-3.57977	-0.21595
O74	0.99587	-2.49559	-0.11780
C75	0.99342	-2.59369	-0.10856
C76	1.03731	-2.63261	0.02961
O77	1.07508	-2.61516	-0.15799
O78	0.99398	-3.52829	-0.11146
C79	0.99136	-3.43027	-0.12075
C80	1.03507	-3.38913	0.01280
O81	1.07351	-3.41517	-0.15784
082	0.08581	-3.53475	-0.11778
C83	0.08826	-3.43664	-0.10845
C84	0.04437	-3.39773	0.02976
H85	0.02167	-2.61522	-0.16756
H86	0.36558	-2.51514	-0.19473
H87	0.40629	-2.64891	-0.38620
H88	0.38867	-2.89565	-1.02196
H89	0.46145	-2.99363	-1.04234
H90	0.52893	-2.80687	-0.39797

H91	0.45779	-2.70653	-0.39256
H92	0.61774	-3.00986	-0.34473
H93	0.69170	-2.91806	-0.30024
H94	0.63595	-2.71170	-0.92780
H95	0.56300	-2.80709	-0.98819
H96	0.46394	-3.02045	-0.34475
H97	0.38997	-3.11225	-0.30027
H98	0.44573	-3.31861	-0.92784
H99	0.51868	-3.22323	-0.98819
H100	0.55275	-3.22345	-0.39795
H101	0.62389	-3.32378	-0.39249
H102	0.69301	-3.13467	-1.02188
H103	0.62023	-3.03669	-1.04231
H104	0.39199	-3.38073	-0.86221
H105	0.67636	-3.38427	-0.38154
H106	0.68968	-2.64958	-0.86214
H107	0.73477	-2.50922	-0.91992
H108	0.71610	-3.51518	-0.19464
H109	0.29087	-3.29875	-0.35516
H110	0.34691	-3.52109	-0.92000
H111	1.04121	-2.64483	0.28194
H112	1.03938	-3.40893	0.25967

Space group: P1 a=29.2648Å, b=15.0158Å, c=8.8932Å g=87 9297° B=92 6375° g=91 9377°				
	u 07.9297 ,p 92.	0015,7 91.9077		
C1	0.77044	0.56102	0.40617	
O2	0.73077	0.51372	0.45610	
C3	0.73340	0.41570	0.45141	
C4	0.68968	0.37454	0.51817	
C5	0.81153	0.51514	0.36567	
C6	0.85142	0.56311	0.32127	
C7	0.89407	0.50788	0.29931	
C8	0.89294	0.42655	0.21363	
C9	0.93290	0.37265	0.19727	
C10	0.97432	0.39942	0.26746	
C11	0.97521	0.47902	0.35579	
C12	0.93532	0.53241	0.37262	
C13	0.01700	0.34534	0.25394	
N14	0.02003	0.27241	0.17000	
C15	0.06187	0.21922	0.16132	
C16	0.06324	0.14015	0.07126	
C17	0.10320	0.08528	0.06701	
C18	0.14199	0.10704	0.15607	
C19	0.14059	0.18789	0.24287	
C20	0.10123	0.24350	0.24520	
C21	0.18478	0.04815	0.15998	
C22	0.22947	0.10027	0.17321	
C23	0.18304	0.95306	0.15998	
C24	0.26501	0.07173	0.27072	
C25	0.30576	0.12305	0.28503	
C26	0.31117	0.20547	0.20566	
C27	0.27531	0.23615	0.11149	
C28	0.23502	0.18380	0.09519	
N29	0.35244	0.25857	0.22757	
C30	0.22583	0.89416	0.15608	
C31	0.13835	0.90094	0.17321	
C32	0.10282	0.92947	0.27071	
C33	0.06206	0.87816	0.28501	
C34	0.05665	0.79574	0.20564	
C35	0.09252	0.76505	0.11147	
C36	0.13280	0.81740	0.09519	
C37	0.22723	0.81332	0.24289	
C38	0.26660	0.75770	0.24523	
C39	0.30596	0.78199	0.16135	
C40	0.30459	0.86106	0.07129	
C41	0.26463	0.91593	0.06703	
N42	0.34780	0.72879	0.17004	
N43	0.01538	0.74264	0.22755	

Table S3b. Atomic space position of the AB-stacking mode of ETTA-B₁₈C₆-COF.

C44	0.00831	0.66380	0.16279
C45	0.35082	0.65587	0.25399
C46	0.35951	0.33741	0.16282
C47	0.40151	0.39108	0.19280
C48	0.39351	0.60178	0.26751
C49	0.96631	0.61013	0.19276
C50	0.43650	0.35703	0.28682
C51	0.47462	0.41212	0.32256
C52	0.47837	0.50226	0.26581
C53	0.44414	0.53392	0.16626
C54	0.40576	0.47923	0.13110
C55	0.39261	0.52218	0.35583
C56	0.43251	0.46880	0.37267
C57	0.47375	0.49333	0.29937
C58	0.47488	0.57466	0.21369
C59	0.43492	0.62855	0.19733
C60	0.93132	0.64418	0.28679
C61	0.89320	0.58909	0.32252
C62	0.88945	0.49895	0.26578
C63	0.92368	0.46729	0.16622
C64	0.96206	0.52198	0.13106
C65	0.51797	0.56149	0.31321
C66	0.51641	0.43809	0.32132
C67	0.84985	0.43972	0.31317
C68	0.55899	0.51670	0.35605
C69	0.59846	0.56521	0.40391
C70	0.59738	0.44018	0.40621
C71	0.55630	0.48606	0.36572
C72	0.80883	0.48450	0.35604
C73	0.76936	0.43599	0.40390
O74	0.63895	0.52017	0.45297
C75	0.63649	0.42207	0.45759
C76	0.68038	0.38315	0.52668
O77	0.71815	0.40060	0.43288
O78	0.63706	0.48747	0.45614
C79	0.63443	0.58549	0.45150
C80	0.67815	0.62664	0.51827
O81	0.71659	0.60059	0.43295
O82	0.72888	0.48101	0.45298
C83	0.73133	0.57912	0.45765
C84	0.68745	0.61803	0.52675
H85	0.66474	0.40054	0.42809
H86	0.00865	0.50062	0.41450
H87	0.04936	0.36685	0.31877
H88	0.03174	0.12011	0.00089
H89	0.10452	0.02213	-0.00930
H90	0.17200	0.20889	0.31288
H91	0.10086	0.30923	0.31559
H92	0.26081	0.00590	0.33951

Н93	0.33477	0.09770	0.36175
H94	0.27902	0.30406	0.04797
H95	0.20607	0.20867	0.01778
H96	0.10701	0.99531	0.33950
H97	0.03305	0.90351	0.36174
H98	0.08881	0.69715	0.04795
H99	0.16175	0.79253	0.01777
H100	0.19582	0.79231	0.31290
H101	0.26696	0.69198	0.31563
H102	0.33608	0.88109	0.00093
H103	0.26331	0.97907	-0.00928
H104	0.03506	0.63503	0.08077
H105	0.31943	0.63149	0.32110
H106	0.33276	0.36618	0.08080
H107	0.37784	0.50654	0.05191
H108	0.35918	0.50058	0.41455
H109	0.93394	0.71701	0.33429
H110	0.98998	0.49467	0.05187
H111	0.68429	0.37093	0.65284
H112	0.68245	0.60683	0.64170
C113	0.12737	0.54526	0.89430
O114	0.08770	0.49796	0.94423
C115	0.09032	0.39994	0.93954
C116	0.04661	0.35878	1.00630
C117	0.16846	0.49938	0.85380
C118	0.20835	0.54735	0.80940
C119	0.25100	0.49212	0.78744
C120	0.24987	0.41079	0.70176
C121	0.28983	0.35689	0.68540
C122	0.33124	0.38366	0.75559
C123	0.33214	0.46326	0.84391
C124	0.29225	0.51665	0.86075
C125	0.37393	0.32958	0.74207
N126	0.37696	0.25665	0.65812
C127	0.41879	0.20346	0.64944
C128	0.42016	0.12439	0.55939
C129	0.46012	0.06952	0.55513
C130	0.49892	0.09128	0.64420
C131	0.49752	0.17213	0.73100
C132	0.45815	0.22774	0.73333
C133	0.54171	0.03238	0.64811
C134	0.58640	0.08451	0.66134
C135	0.53997	0.93730	0.64811
C136	0.62193	0.05597	0.75885
C137	0.66268	0.10729	0.77316
C138	0.66810	0.18971	0.69379
C139	0.63223	0.22039	0.59962
C140	0.59195	0.16804	0.58332
N141	0.70936	0.24281	0.71570

C142	0.58276	0.87840	0.64421
C143	0.49528	0.88518	0.66133
C144	0.45974	0.91371	0.75884
C145	0.41899	0.86240	0.77314
C146	0.41358	0.77998	0.69376
C147	0.44944	0.74929	0.59960
C148	0.48973	0.80164	0.58331
C149	0.58416	0.79756	0.73101
C150	0.62352	0.74194	0.73336
C151	0.66289	0.76623	0.64948
C152	0.66152	0.84530	0.55942
C153	0.62156	0.90017	0.55515
N154	0.70472	0.71303	0.65817
N155	0.37231	0.72688	0.71567
C156	0.36524	0.64804	0.65092
C157	0.70775	0.64011	0.74212
C158	0.71643	0.32165	0.65095
C159	0.75844	0.37532	0.68093
C160	0.75044	0.58602	0.75564
C161	0.32324	0.59437	0.68089
C162	0.79342	0.34127	0.77495
C163	0.83155	0.39636	0.81068
C164	0.83530	0.48650	0.75394
C165	0.80106	0.51816	0.65438
C166	0.76268	0.46347	0.61922
C167	0.74954	0.50642	0.84396
C168	0.78943	0.45304	0.86080
C169	0.83068	0.47757	0.78749
C170	0.83181	0.55890	0.70181
C171	0.79185	0.61279	0.68546
C172	0.28825	0.62842	0.77491
C173	0.25012	0.57333	0.81065
C174	0.24637	0.48319	0.75391
C175	0.28061	0.45153	0.65435
C176	0.31899	0.50622	0.61919
C177	0.87490	0.54573	0.80133
C178	0.87333	0.42233	0.80944
C179	0.20678	0.42396	0.80130
C180	0.91592	0.50094	0.84418
C181	0.95539	0.54945	0.89203
C182	0.95431	0.42442	0.89434
C183	0.91323	0.47030	0.85385
C184	0.16576	0.46874	0.84417
C185	0.12629	0.42023	0.89202
O186	0.99587	0.50441	0.94110
C187	0.99342	0.40631	0.94572
C188	0.03731	0.36739	1.01480
O189	0.07508	0.38484	0.92100
O190	0.99398	0.47171	0.94427

C191	0.99136	0.56973	0.93963
C192	0.03507	0.61087	1.00640
O193	0.07351	0.58483	0.92108
O194	0.08581	0.46525	0.94111
C195	0.08826	0.56336	0.94577
C196	0.04437	0.60227	1.01488
H197	0.02167	0.38478	0.91622
H198	0.36558	0.48486	0.90263
H199	0.40629	0.35109	0.80690
H200	0.38867	0.10435	0.48902
H201	0.46145	0.00637	0.47883
H202	0.52893	0.19313	0.80101
H203	0.45779	0.29347	0.80372
H204	0.61774	0.99014	0.82763
H205	0.69170	0.08194	0.84988
H206	0.63595	0.28830	0.53610
H207	0.56300	0.19291	0.50591
H208	0.46394	0.97955	0.82762
H209	0.38997	0.88775	0.84986
H210	0.44573	0.68139	0.53608
H211	0.51868	0.77677	0.50590
H212	0.55275	0.77655	0.80102
H213	0.62389	0.67622	0.80375
H214	0.69301	0.86533	0.48906
H215	0.62023	0.96331	0.47885
H216	0.39199	0.61927	0.56890
H217	0.67636	0.61573	0.80923
H218	0.68968	0.35042	0.56893
H219	0.73477	0.49078	0.54004
H220	0.71610	0.48482	0.90268
H221	0.29087	0.70125	0.82242
H222	0.34691	0.47891	0.54000
H223	0.04121	0.35517	1.14097
H224	0.03938	0.59107	1.12983

Section 9. Supporting References

 D.W. Lim, S. A. Chyun, M. P. Suh, Hydrogen storage in a potassium-ion-bound metal–organic framework incorporating crown ether struts as specific cation binding sites. Angew. Chem. Int. Ed. 2014, 53, 7819-7822.