Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary information

Ratiometric fluorescence sensing based on rare earth upconversion

nanoparticles for rapid identification of antioxidant capacity

Shuwen Li, Zhiguo Wang, Siyi Chen, Jialin Gu, Yanping Ma, Jiangang Jiang, Rui Zhang, Dan Zhang, Yiping Wang, He Wang*

Figure. S1 The TEM and corresponding elemental mapping of Si, Y, F, Yb and Tm elements of UCNPs@SiO_2 nanoparticles. The scale bars are 50 nm

Zeta Potential Distribution

Figure S3 UV absorption spectra of SA-Fe $^{\rm III}$

In order to have the best absorption effect of SA-Fe^{III}, the results of several checks on its concentration ratio show that the chelate has the best absorption capacity when the ratio of Fe^{III} to SA is 4:3.

Figure. S4 Absorbance of SA-Fe^{III} at different concentration ratios(V_{FeIII} : V_{SA})

Figure. S5 Effect of SA-Fe^{III} content on fluorescence intensity ratio

Figure. S6 The fluorescence spectra of UCNPs@SiO₂(A) $\sqrt{}$ UCNPs@SiO₂ - SA-Fe^{III}(B) and UCNPs@SiO₂-SA-Fe^{III} after centrifugation and cleaning(C)