Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary information

Comparison of the structure-property relationships between sillenite and perovskite phases of Bi_{0.9}Dy_{0.1}FeO₃ nanostructures

Fahmida Sharmin^a, Ferdous Ara^b, M. A. Basith^a

 ^aNanotechnology Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
 ^bInstitute of Multidisciplinary Research of Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-0877, Japan.

 Table S1: The structural variables and constituent phases (in wt%) calculated from the Rietveld refned

 XRD spectra of the as-synthesized materials

Sample	Crystal structure	Lattice	Volume (Å) ³	R factors
		parameters		
	BiFeO ₃ (Perovskite) ($R3c$;Rhombohedral) Fract(%):10.32(0.18)	a=b=5.5732(1) c=13.8576(3)	374.353(0.024)	
BDFO(HT)	Bi ₂₅ FeO ₄₀ (Sillenite) (<i>123</i> ;Cubic) Fract(%):76.89(0.16)	a=b=c= 10.1564(1)	1048.912(0.017)	$\chi^{2} = 17.3 R_{p} = 6.69 R_{wp} = 9.2$
	Bi ₂ Fe ₄ O ₉ (Mullite) (<i>pbam</i> ;Orthorhombic) Fract(%):12.79(1.24)	a=8.2788(1) b=8.3455(1) c=6.0574(3)	418.418(0.270)	
BDFO(SG)	BiFeO ₃ (Perovskite) (<i>R3c</i> ;Rhombohedral) Fract(%):98.71(1.30)	a=b=5.56912(1) c=13.82938(3)	371.456(0.044)	$\chi^2 = 5.18$ $R_p = 4.36$
	Bi ₂₅ FeO ₄₀ (Sillenite) (<i>123</i> ;Cubic) Fract(%):1.29(0.01)	a=b=c= 10.14769(1)	1044.963(0.000)	$R_{wp} = 2.84$

Fig. S1. FTIR spectra of BDFO(HT) and BDFO(SG) samples.

Fig. S2. Reusability tests using (a) BDFO(HT) and (b) BDFO(SG) photocatalysts up to four RhB degradation cycles.

Fig. S3. PL spectra of BDFO(HT) and BDFO(SG) samples.