Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Construction of S-scheme CdS/CuFe₂O₄ heterojunction with suppressed charge recombination for enhanced visible light driven photocatalytic activity

C. Akshhayya^a, Mohammad Omaish Ansari^b, B. Janani^c, V. Subhiksha^a, Ammar A. Melaibari^{b,d},

P.M.Z. Hasan^b, Mohammad Asad^{e,f}, S. Sudheer Khan^{g,*}

^aNanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of

Technology, Sathyamangalam, Tamil Nadu, India

^bCenter of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

^cNano-imaging and Spectroscopy Laboratory, Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa ON L1G 0C5, Canada

^dDepartment of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

^eCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O.

Box 80203, Jeddah 21589, Saudi Arabia

^fChemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

^gDepartment of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai- 600077, Tamil Nadu, India.

*Corresponding author

Dr. S. Sudheer Khan

Email: sudheerkhans.sdc@saveetha.com

Text S1.

Characterization of nanoparticles

XRD analysis (Bruker D8 Advance) was carried out to study the crystalline nature of fabricated $CuFe_2O_4/CdS$ NCs in the 2 θ range of 10 to 90° using Cu-K α radiation ($\lambda = 1.54178$ A°). TEM was carried out to examine the morphology of fabricated nanomaterial using Jeol/JEM 2100. EDAX analysis was done to confirm the presence of elements in the NCs. FTIR of the fabricated NCs was acquired from the Thermo Fisher scientific Nicolet IS50 instrument. The specific surface area of the sample was detected by BET analysis (Quantachrome instrument, Autosorb IQ series). In order to detect the chemical composition and oxidation states of the fabricated NCs, XPS analysis was done using Thermo ScientificTM ESCALABTM Xi+. UV-vis DRS was done using Perkin-Elmer Lambda 750. Raman spectroscopic studies (WiTec alpha 300, Germany) were done in order to determine the vibrational modes of NCs. EIS (Metrohm Autolab Potentiostat) was carried out to confirm the effective separation and migration of e⁻/h⁺ pairs. Photoluminescence spectroscopy (FLS 1000, Edinburgh Instruments) was carried out to obtain the PL spectra of the fabricated NCs.

Figure S1: SEM image (a) CuFe₂O₄and (b) CdS.

Figure S2. EDAX of CuFe₂O₄/CdS NCs- 40

Figure S3. (a) ESR, (b) EIS and (c) BET analysis.

Figure S4. Plot of C/C_0 and $1-C/C_0$ vs time. (a) $CuFe_2O_4/CdS$ NCs -20, (b) $CuFe_2O_4/CdS$ NCs -60, (c) $CuFe_2O_4$ and (d) CdS.

Figure S5. XPS spectra of reused CuFe₂O₄/CdS NCs-40.

Table S1. Comparative data on photocatalysis of present work	with available literature.
--	----------------------------

Particle	Photocatalytic activity (%)	Photocatalyst dosage (mg/L)	Pollutant concentration	References
CeO ₂ /CdS	88.07	1000	12 mg/L	[47]
FeSe	88.00	500	6 µM	[48]
CuFe ₂ O ₄ (UV light)	94.20	240	20 mg/L	[49]
$CuFe_2O_4/Bi_2O_3$ (with H_2O_2)	91.00	2400	7 mg/L	[50]
$CuFe_2O_4/C_3N_4$ hybrid (with H_2O_2)	98.00	1000	0.028 mM	[51]
CuFe ₂ O ₄ /CdS NCs-40	90.06	150	25 mg/L	Present work