Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Electronnic supporting Information for:

Dual Crosslinked PMMA/BaTiO₃ Polymer Nanocomposite Dielectrics for

Flexible Film Capacitors

Yulei Zhang ^{a,b}, Kun Zhang^{a,b}, Xiaoya Hou^{*a,b}, Lei Liu^c and Jie Zhang ^{a,b}

^{a.}School of Mechanical Engineering, Jiangnan University, No.1800, Lihu Avenue, Wuxi City, Jiangsu 214122, P.R. China. ^{b.}Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology (Jiangnan University).

^{c.}China Center for Modernization Research, Chinese Academy of Sciences.

*Corresponding author: xiaoyahou@jiangnan.edu.cn

1. GPC results

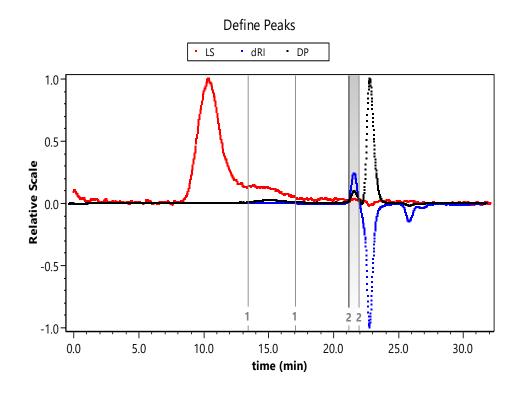


Figure S1. GPC of PMMA-BT(8 wt%)

File Name: Experiment16 Collection Operator: JiangNanUni-PC\JiangNan Uni (JiangNanUni-PC\JiangNan Uni (JiangNan Uni)) Processing Operator: JiangNanUni-PC\JiangNan Uni (JiangNan Uni)

Sample: untitled

Configuration

Notes:

Concentration Source: RI Flow Rate: 1.000 mL/min

Light Scattering Instrument: HELEOS

Cell Type: Fused Silica Wavelength: 664.0 nm Calibration Constant: 3.1929×10⁻⁵ 1/(V cm)

RI Instrument: rEX

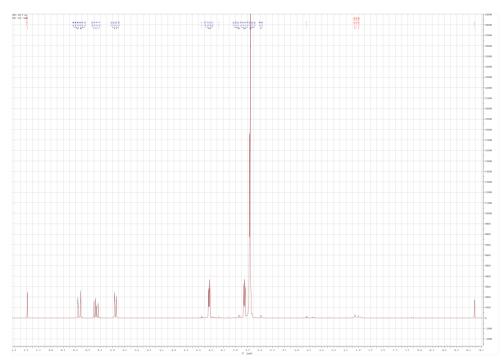
Viscometer: ViscoStar Dilution Factor: 0.4994

Solvent: DMF Temperature Correction Enabled: no Refractive Index: 1.431

Results

Peak Results

	Peak 1	Peak 2
Hydrodynamic radius (v) moments (nm)		
Rh(v)n	13.245 (±2.477%)	0.767 (±6.290%)
Rh(v)w	14.725 (±2.950%)	0.803 (±6.528%)
Rh(v)z	21.537 (±6.357%)	0.864 (±6.884%)
Masses		
Calculated Mass (µg)	2.65	127.42
Mass Recovery (%)	n/a	n/a
Mass Fraction (%)	2.0	98.0
Molar mass moments (g/mol)		
Mn	3.552×10 ⁵ (±6.027%)	1.402×10 ³ (±18.583%)
Мр	2.561×10 ⁵ (±5.875%)	1.202×10 ³ (±16.221%)
Mv	4.092×10 ⁵ (±1.106%)	1.510×10 ³ (±2.915%)
Mw	4.452×10 ⁵ (±5.999%)	1.554×10 ³ (±19.951%)
Mz	8.669×10 ⁵ (±13.121%)	1.810×10 ³ (±46.645%)
Polydispersity		
Mw/Mn	1.253 (±8.504%)	1.109 (±27.265%)
Mz/Mn	2.441 (±14.439%)	1.292 (±50.210%)
rms radius moments (nm)		
Rn	15.7 (±75.6%)	n/a
Rw	16.7 (±67.1%)	n/a
Rz	17.3 (±62.7%)	n/a
Intrinsic viscosity moments (mL/g)		
[ղ]ո	42.745 (±4.350%)	2.076 (±0.898%)
[ŋ]w	50.16 (±6.97%)	2.17 (±1.01%)
[ŋ]z	91.035 (±22.678%)	2.337 (±1.165%)


Mark-Houwink-Sakurada a: 0.545 (±0.134%) **Mark-Houwink-Sakurada K:** 4.057×10⁻² (±0.588%) mL/g

Results

Peak Results		
	Peak 1	Peak 2
Hydrodynamic radius (v) moments (nm)		
Rh(v)n	13.245 (±2.477%)	0.767 (±6.290%)
Rh(v)w	14.725 (±2.950%)	0.803 (±6.528%)
Rh(v)z	21.537 (±6.357%)	0.864 (±6.884%)
Masses		
Calculated Mass (µg)	2.65	127.42
Mass Recovery (%)	n/a	n/a
Mass Fraction (%)	2.0	98.0
Molar mass moments (g/mol)		
Mn	3.552×10 ⁵ (±6.027%)	1.402×10 ³ (±18.583%)
Мр	2.561×10 ⁵ (±5.875%)	1.202×10 ³ (±16.221%)
Mv		1.510×10 ³ (±2.915%)
Mw	4.452×10 ⁵ (±5.999%)	1.554×10 ³ (±19.951%)
Mz		1.810×10 ³ (±46.645%)
Polydispersity		
Mw/Mn	1.253 (±8.504%)	1.109 (±27.265%)
Mz/Mn	2.441 (±14.439%)	1.292 (±50.210%)
rms radius moments (nm)		
Rn		n/a
Rw	16.7 (±67.1%)	n/a
Rz	17.3 (±62.7%)	n/a
Intrinsic viscosity moments (mL/g)		
[ղ]ո	42.745 (±4.350%)	
[ŋ]w	50.16 (±6.97%)	
[ŋ]z	91.035 (±22.678%)	2.337 (±1.165%)

Mark-Houwink-Sakurada a: 0.545 (±0.134%) Mark-Houwink-Sakurada K: 4.057×10⁻² (±0.588%) mL/g

2. NMR

Figure S2. NMR of Phosphate

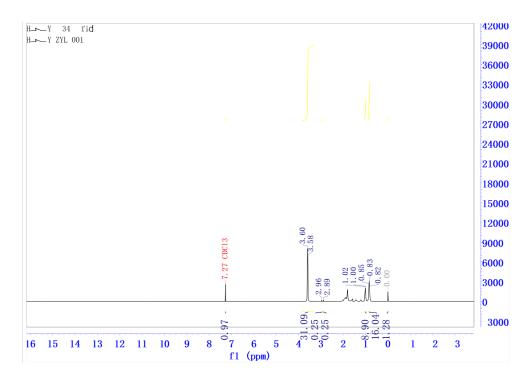


Figure S3. NMR of PMMA-BT(8 wt%)

3. Calculation of m-BT vol%

m-BT vol% was calculated by formula (1):

$$m - BT \operatorname{vol}\% = \frac{V_{m-BT}}{V_{PMMA-BT}} \times 100\% \quad (1)$$

where ρ_{PMMA} , ρ_P and ρ_{BT} were the densities of PMMA, the phosphate and BT, which are equal to $1.17g/cm^3$, $1.387g/cm^3$ and $6.017g/cm^3$, respectively.

4. Dielectric constant and dielectric loss

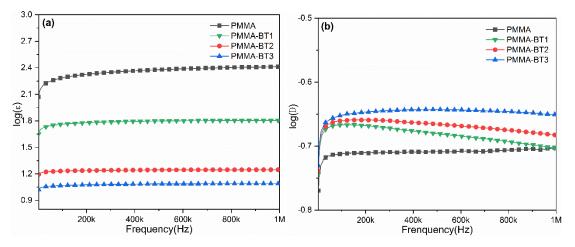


Figure S4. The logarithm of dielectric constant (a) and dielectric loss (b) of Pure PMMA and PMMA-BT film

with frequency from 1 KHz to 1 MHz.

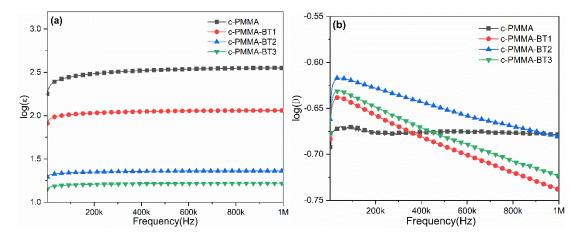


Figure S5. The logarithm of dielectric constant (a) and dielectric loss, (b) of c-PMMA and c-PMMA-BT film

with frequency from 1 KHz to 1 MHz.