Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

SUPPORTING INFORMATION

AgNPs supported over porous organic polymers for the fixation of CO₂ on propargyl alcohols and amines under solvent free conditions

Amitesh Roy^a, Najirul Haque^a, Ritayan Chatterjee^b, Surajit Biswas^a, Asim Bhaumik^{c*}, Mitali Sarkar^{a*}, Sk. Manirul Islam^{a*,}

^aDepartment of Chemistry,University of Kalyani, Kalyani, Nadia, 741235, W.B., India. Email: mitaliku@gmail.com; manir65@rediffmail.com

^bDepartment of Physics, Heritage Institute of Technology Kolkata, East Kolkata Township, Kolkata,700107, India.

^cSchool of Material Sciences, Indian Association for the Cultivation of Science, Kolkata 700 032, West Bengal, India. Email: msab@iacs.res.in

Serial No.	Contents	Pages
1	Materials	S2
2	Characterization Techniques	S2
3	characterisations	\$3-\$4
4	¹ H NMR of Cyclic carbonates from propargyl alcohol and CO_2 .	S4-S8
5	¹ H NMR acyclic carbamates from amines, halides and CO ₂ .	S9-S15
6	Reference	S15

Materials

All chemicals were purchased from commercially available sources and used as received without further purification. Solvents were distilled and dried through standard methods before use.

Characterization Techniques

A D8 Advance SWAX diffractometer from Bruker-AXS utilizing a constant current (40 mA) and voltage (40 kV) was used to obtain the powder XRD pattern of the AgNPs@TzTa-POP catalyst. The XRD machine was calibrated with silicon sample utilizing Ni-filtered Cu K_{α} radiation (λ =0.15406 nm). On a Perkin–Elmer FTIR 783 spectrophotometer the Fourier transform infrared (FTIR) spectra of the catalysts were recorded from 400 to 4000 cm⁻¹ using KBr pellets. Scanning electron microscope (SEM) (ZEISS EVO40, England) equipped with EDX facility was used to measure surface morphology of the AgNPs@TzTa-POP. BET surface area and porosity of these materials were estimated from the respective N_2 sorption isotherms at 77 K by using a Quantachrome Instruments Autosorb-1C surface area analyzer. The samples were activated at 403 K under high vacuum for 12 h before the N₂ adsorption-desorption analysis. TEM images were recorded using FEI Tecnai G2 F20 X-TWIN TEM at an accelerating voltage of 200 kV. HR-TEM, 5 mg of the AgNPs@TzTa-POP catalyst was dispersed into absolute EtOH under the application of sonication for 30 min, followed by the sample coating on a carbon coated copper TEM grid and dried in air. All spectra were taken at 400 MHz for ¹H NMR. Using Bruker DPX-400 in CDCl₃ instrument with TMS as internal standard the products was confirmed by ¹H spectroscopy.

Characterisations

Fig. S1: IR of catalyst under different medium

Fig. S2: CO₂ adsorption-desorption profile of AgNPs@TzTa-POP.

Fig. S3 : IR of reused catalyst AgNPs@TzTa-POP.

Fig. S4: Variation of catalyst loading on the carbamates formation reaction (reaction conditions: benzylamine (6 mmol), iodopropane (6 mmol), Cs_2CO_3 (1.5 eq.), CO_2 balloon, RT, 8h) (Edit the figure: write Catalyst (mg) in X-axis and place the Yield (%) in Y-axis properly).

SEM of reused catalyst AgNPs@TzTa-POP

Fig S5 : SEM of reused catalyst AgNPs@TzTa-POP.

<u>Characterizations data of respective α -alkylidene cyclic carbonates.</u>¹

2a	[4,4-dimethyl-5-methylene-1,3-dioxolan-2-one] : ¹ H NMR (400 MHz, CDCl ₃): δ (in ppm) 1.184 (s, 6H), 4.366 (d, <i>J</i> = 5.6 Hz, 1H), 4.663 (d, <i>J</i> = 5.6 Hz, 1H).
2c	[4-ethyl-4-methyl-5-methylene-1,3-dioxolan-2-one] : ¹ H NMR (400 MHz, CDCl ₃): δ (in ppm) 1.183 (t, <i>J</i> = 4.0, 3H), 1.476 (s, 3H), 1.678-1.712 (m, 2H), 4.297 (d, <i>J</i> = 4.0 Hz, 1H), 4.608 (d, <i>J</i> = 4.0 Hz, 1H).
2d	[4-isobutyl-4-methyl-5-methylene-1,3-dioxolan-2-one]: ¹ H NMR (400 MHz, CDCl3): δ (in ppm) 0.913-0.963 (m, 6H), 1.536 (s, 3H), 1.754-1.780 (m, 1H), 1.836-1.874 (m, 2H), 4.347 (d, <i>J</i> = 4.8 Hz, 1H), 4.683 (d, <i>J</i> = 4.8 Hz, 1H).
2e	[4-methylene-1,3-dioxaspiro[4.5]decan-2-one]: ¹ Η NMR (400 MHz, CDCl3): δ (in ppm) 1.183-1.956 (m, 10H), 4.213 (d, <i>J</i> = 3.6Hz, 1H), 4.689 (d, <i>J</i> = 4.0 Hz, 1H).

[4-methyl-5-methylene-4-phenyl-1,3-dioxolan-2-one]: ¹H NMR (400 MHz, CDCl3): δ (in ppm)1.936 (s, 3H), 4.391 (d, *J*= 3.6Hz,1H), 4.878 (d, *J*= 3.6Hz, 1H), 7.183 (d, *J*=8.0 Hz, 1H), 7.435-7.458 (m, 2H), 7.812 (d, *J* = 8.0 Hz, 2H).

Fig S6: ¹H NMR of 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one.

Fig S7: ¹H NMR of 4-ethyl-4-methyl-5-methylene-1,3-dioxolan-2-one.

Figure S8: ¹H NMR of 4-ethyl-4-methyl-5-methylene-1,3-dioxolan-2-one.

Fig S9: ¹H NMR of 4-methylene-1,3-dioxaspiro[4.5]decan-2-one.

Fig S10:¹H NMR of 4-methyl-5-methylene-4-phenyl-1,3-dioxolan-2-one.

Characterizations data of respective isolatedcarbamatesfrom amines, halides and CO2.2

HN HN 5a	Benzyl-carbamic acid propyl ester : ¹ H NMR (400 MHz, CDCl ₃): δ (ppm)1.541 (t, <i>J</i> = 6.8Hz, 3H), 3.101 (s, 2H), 3.997-4.030 (m, 2H), 4.306 (t, <i>J</i> =6.8Hz,2H), 5.938 (s, 1H), 7.268-7.382 (m, 2H), 7.640-7.690 (m, 1H), 7.778-7.802 (m,2H).
HN 5b	Benzyl-carbamic acid phenyl ester: ¹ H NMR (400 MHz, CDCl ₃): δ (ppm)4.291 (d, <i>J</i> = 6.0 Hz, 2H), 4.938 (s, 1H), 6.501-6.616 (m, 6H), 7.062-7.135 (m, 4H).
O HN OMe 5c	Propyl (4-methoxybenzyl) carbamate : ¹ H NMR (400 MHz, CDCl ₃): δ (ppm) 1.388 (t, <i>J</i> = 6.8 Hz, 3H), 2.44-2.269 (m, 2H), 2.900 (t, <i>J</i> = 6.8 Hz, 2H), 3.561 (s, 3H), 4.104 (s, 2H), 4.669 (s, 1H), 7.229 (t, <i>J</i> = 7.6Hz, 2H), 7.761 (t, <i>J</i> = 7.6 Hz, 2H).
HN HN Br 5d	Propyl (4-bromobenzyl)carbamate : ¹ H NMR (400 MHz, CDCl ₃): δ (ppm)1.522 (t, <i>J</i> = 7.2Hz, 3H), 3.004 (t, <i>J</i> =7.2Hz, 2H), 3.156 (t, <i>J</i> = 7.6Hz,2H), 4.178 (s, 2H), 4.813 (s, 1H), 6.524-6.562 (m, 2H), 7.096-7.134 (m, 2H).
NH 5e	Phenyl-carbamic acid propyl ester : ¹ H NMR (400 MHz, CDCl ₃): δ (ppm)0.904 (t, <i>J</i> = 6.8Hz, 3H), 1.587-1.659 (m, 2H), 4.048 (t, <i>J</i> = 6.8Hz, 2H), 7.156-7.248 (m, 4H), 7.920 (s, 1H).

Fig S11: ¹H NMR of Benzyl-carbamic acid propyl ester.

HN

Fig S12: ¹H NMR of Benzyl-carbamic acid phenyl ester.

Fig S13: ¹H NMR of Propyl (4-methoxybenzyl) carbamate.

Fig S14: ¹H NMR of Propyl (4-bromobenzyl) carbamate.

Fig S15: ¹H NMR of Phenyl-carbamic acid propyl ester.

References

[1] Z. Wu, X. Lan, Y. Zhang, M. Lia and G. Bai, *Dalton Trans.*,2019, **48**, 11063-11069.
[2] R. Khatun, S. Biswas, S. Islam, I. H. Biswas, S. Riyajuddin, K. Ghosh, and S. M. Islam, *ChemCatChem.*,2019,**11**, 1303–1312.