Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Synthesis and fluorescence properties of 9,9-dimethylfluorene-diyl bridged molecular gyrotops: Effects of slight fluorophore motion on fluorescence efficiency in a solid-state

Reina Yoshizawa,^a Yusuke Inagaki,^a Hiroyuki Momma,^b Eunsang Kwon,^b Kazuaki Ohara,^c Kentaro Yamaguchi,^c

and Wataru Setaka*a

a. Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University,

Hachioji, Tokvo 192-0397, Japan

b. Faculty of Pharmaceutic Research and Analytical Center for Giant Molecules, Graduate School of Science,

Tohoku University, Aoba-ku, Sendai, 980-8578, Japan.

c. Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido,

Sanuki, Kagawa 769-2193, Japan.

E-mail: wsetaka@tmu.ac.jp

(Total 26 pages including this cover page)

1. Copies of NMR and HRMS Spectra for New Compounds

Fig. S1. ¹H NMR spectrum of C10FluC10 in CDCl₃.

Fig. S2. ¹³C NMR spectrum of C10FluC10 in CDCl₃.

Fig. S3. HRMS spectrum of C10FluC10 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S4. ¹H NMR spectrum of C12FluC12 in CDCl₃.

Fig. S5. ¹³C NMR spectrum of C12FluC12 in CDCl₃.

Fig. S6. HRMS spectrum of C12FluC12 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S7. ¹H NMR spectrum of C18 in CDCl₃.

Fig. S8. ¹³C NMR spectrum of C18 in CDCl₃.

Fig. S9. HRMS spectrum of C18 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S10. ¹H NMR spectrum of C18i in CDCl₃.

Fig. S11. ¹³C NMR spectrum of C18i in CDCl₃.

Fig. S12. HRMS spectrum of C18i (ESI, positive). Top: obsd. Bottom: sim.

Fig. S13. ¹H NMR spectrum of C22 in CDCl₃.

Fig. S14. ¹³C NMR spectrum of C22 in CDCl₃.

Fig. S15. HRMS spectrum of C22 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S16. ¹H NMR spectrum of C22i in CDCl₃.

Fig. S17. ¹³C NMR spectrum of C22i in CDCl₃.

Fig. S18. HRMS spectrum of C22i (ESI, positive). Top: obsd. Bottom: sim.

Fig. S19. ¹H NMR spectrum of Flu-d₄ in CDCl₃.

Fig. S20. ¹³C NMR spectrum of Flu-d₄ in CDCl₃.

Fig. S21. HRMS spectrum of Flu-d4 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S22. ¹H NMR spectrum of BrFluBr-d₃ in CDCl₃.

Fig. S23. ¹³C NMR spectrum of BrFluBr-d₃ in CDCl₃.

Fig. S24. HRMS spectrum of BrFluBr-d3 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S25. ¹H NMR spectrum of C10FluC10-d3 in CDCl3.

Fig. S26. ¹³C NMR spectrum of C10FluC10-d₃ in CDCl₃.

Fig. S27. HRMS spectrum of C10FluC10-d3 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S28. ¹H NMR spectrum of C18-d₃ in CDCl₃.

Fig. S29. ¹³C NMR spectrum of C18-d₃ in CDCl₃.

Fig. S30. HRMS spectrum of C18-d3 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S31. ¹H NMR spectrum of C12FluC12-d₃ in CDCl₃.

Fig. S32. ¹³C NMR spectrum of C12FluC10-d₃ in CDCl₃.

Fig. S33. HRMS spectrum of C12FluC12-d3 (ESI, positive). Top: obsd. Bottom: sim.

Fig. S34. ¹H NMR spectrum of C22-d₃ in CDCl₃.

Fig. S35. ¹³C NMR spectrum of C22-d₃ in CDCl₃.

Fig. S36. HRMS spectrum of C22-d3 (ESI, positive). Top: obsd. Bottom: sim.

2. Appended Data of X-ray Crystallography

 Table S1. Crystal Data

Fig. S37. An ORTEP drawing (30% thermal ellipsoids) of molecular structure of C18 determined by X-ray crystallography.

Fig. S38. An ORTEP drawing (30% thermal ellipsoids) of molecular structure of C22•2EtOH determined by X-ray crystallography.

Fig. S39. An ORTEP drawing (30% thermal ellipsoids) of molecular structure of Flu determined by X-ray crystallography.

Fig. S40. An ORTEP drawing (30% thermal ellipsoids) of molecular structure of TMS determined by X-ray crystallography.

3. Appended Data of Fluorescence Measurements

Fig. S41. Fluorescence life-time measurements for fluorenes in hexane: (a) C18, (b) C22, (c) TMS, and (d) Flu.

Fig. S42. Fluorescence life-time measurements for fluorenes in solid-states: (a) C18, (b) C22, (c) TMS, and (d) Flu. 4. Appended Data of Solid-state ²H NMR Study

Figure S43. Inversion-recovery ²H NMR spectroscopy data (300 K) and single exponential fit of (a) C18-d₃ and (b) C22-d₃.

1. Copies of NMR and HRMS Spectra for New Compounds

a. Spectra of C10FluC10

Fig. S3. HRMS spectrum of C10FluC10 (ESI, positive). Top: obsd. Bottom: sim.

b. Spectra of C12FluC12

Fig. S4. ¹H NMR spectrum of C12FluC12 in CDCl₃.

Fig. S6. HRMS spectrum of C12FluC12 (ESI, positive). Top: obsd. Bottom: sim.

c. Spectra of C18

Fig. S10. ¹H NMR spectrum of C18i in CDCl₃.

Fig. S12. HRMS spectrum of C18i (ESI, positive). Top: obsd. Bottom: sim.

e. Spectra of C22

Fig. S16. ¹H NMR spectrum of C22i in CDCl₃.

Fig. S17. ¹³C NMR spectrum of C22i in CDCl₃.

Fig. S18. HRMS spectrum of C22i (ESI, positive). Top: obsd. Bottom: sim.

Fig. S21. HRMS spectrum of Flu-d₄ (ESI, positive). Top: obsd. Bottom: sim.

Fig. S23. ¹³C NMR spectrum of BrFluBr-d₃ in CDCl₃.

Fig. S24. HRMS spectrum of BrFluBr-d₃ (ESI, positive). Top: obsd. Bottom: sim.

i. Spectra of C10FluC10-d₃

k. Spectra of C18-d₃

Fig. S30. HRMS spectrum of C18-d₃ (ESI, positive). Top: obsd. Bottom: sim.

j. Spectra of C12FluC12-d₃

Mn

 M_{n-9}

Fig. S33. HRMS spectrum of C12FluC12-d₃ (ESI, positive). Top: obsd. Bottom: sim.

Fig. S34. ¹H NMR spectrum of $C22-d_3$ in CDCl₃.

Fig. S35. ¹³C NMR spectrum of $C22-d_3$ in CDCl₃.

Fig. S36. HRMS spectrum of C22-d₃ (ESI, positive). Top: obsd. Bottom: sim.

2. Appended Data of X-ray Crystallography

2-1. Crystal Data

Table S1. Crystal Data

Compound		C18	C22•2EtOH	Flu	TMS
CCDC #		2223164	2223165	2239859	2239860
Empirical formula		C69 H120 Si2	C81 H144 Si2, 2(C2 H6 O)	C15 H14	C21 H30 Si2
Temperature		200(2) K	180(2) K	200(2) K	200(2) K
Crystal shape & Color		Prism, colorless	Prism, colorless	Prism, colorless	Prism, colorless
Crystal size		0.150 x 0.140 x 0.100 mm ³	0.200 x 0.100 x 0.080 mm ³	0.400 x 0.200 x 0.100 mm ³	0.300 x 0.150 x 0.100 mm ³
Formula weight / g mol ⁻¹		1005.82	1266.27	194.26	338.63
Crystal system		Triclinic	Monoclinic	Tetragonal	Monoclinic
Space group		<i>P</i> -1	C2/c	$I4_1/a$	$P2_{1}/c$
Z		2	8	16	4
Calculated density		0.995 Mg/m ³	0.994 Mg/m ³	1.130 Mg/m ³	1.068 Mg/m ³
Cell parameter	а	11.6403(14) Å	34.1454(8) Å	21.6843(2) Å	14.1329(3) Å
	b	18.4301(10) Å	24.9090(6) Å	21.6843(2) Å	6.59460(10) Å
	с	18.5637(16) Å	22.8091(5) Å	9.7108(2) Å	23.4684(5) Å
	α	60.565(11)°	90°	90°	90°
	β	80.343(15)°	119.3180(10)°	90°	105.6690(10)°
	γ	75.890(15)°	90°	90°	90°
	V	3358.3(8) Å ³	16915.0(7) Å ³	4566.10(13) Å ³	2105.99(7) Å ³
F(000)		1124	1140	1664	736
Absorption coefficient		0.089 mm ⁻¹	0.676 mm ⁻¹	0.476 mm ⁻¹	1.491 mm ⁻¹
heta range for collection		3.020 to 25.000° (MoKα)	2.313 to 67.998° (CuKα)	6.450 to 77.434° (CuKα)	3.912 to 77.432° (CuKα)
Index ranges		-13<=h<=13, - 21<=k<=21, -22<=l<=22	-40<=h<=41, - 29<=k<=29, -27<=l<=27	-27<=h<=24, - 26<=k<=26, - 12<=l<=11	-16<=h<=17, - 7<=k<=6, - 29<=l<=28
Reflections collected		51256	70491	18692	17125
Independent reflections		11729 [R(int) = 0.1803]	15353 [R(int) = 0.1011]	2400 [R(int) = 0.0372]	4309 [R(int) = 0.0296]
Completeness		99.3 %	99.6 %	99.6 %	98.7 %
Goodness-of-fit on F ²		1.060	1.434	1.078	1.082
Final R indices [I>2sigma(I)]		R1 = 0.1248, wR2 = 0.3516	R1 = 0.1390, wR2 = 0.3924	R1 = 0.0536, wR2 = 0.1285	R1 = 0.0410, wR2 = 0.1049
R indices (all data)		R1 = 0.2064, wR2 = 0.3847	R1 = 0.1921, wR2 = 0.4429	R1 = 0.0564, wR2 = 0.1311	R1 = 0.0420, wR2 = 0.1059

Fig. S37. An ORTEP drawing (30% thermal ellipsoids) of molecular structure of C18 determined by X-ray crystallography.

Fig. S38. An ORTEP drawing (30% thermal ellipsoids) of molecular structure of **C22•2EtOH** determined by X-ray crystallography.

Fig. S39. An ORTEP drawing (30% thermal ellipsoids) of molecular structure of **Flu** determined by X-ray crystallography.

Fig. S40. An ORTEP drawing (30% thermal ellipsoids) of molecular structure of TMS determined by X-ray crystallography.

3. Appended Data of Fluorescence Measurements

Fig. S41. Fluorescence life-time measurements for fluorenes in hexane (The excitation pulse was indicated with purple line.) : (a) C18, (b) C22, (c) TMS, and (d) Flu.

Fig. S42. Fluorescence life-time measurements for fluorenes in solid-states (The excitation pulse was indicated with purple line.): (a) C18, (b) C22, (c) TMS, and (d) Flu.

4. Appended Data of Solid-state ²H NMR Study

a. Analysis of ²H NMR spin-lattice relaxation (T_1) measurements

Figure S43 Inversion-recovery ²H NMR spectroscopy data (300 K) and single exponential fit of (a) C18- d_3 and (b) C22- d_3 .