Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

A direct Z-scheme S-Co₃O₄/Bi₂WO₆ heterostructure for enhanced photoelectrocatalytic degradation of tetracycline under visible light

Litao Jia, Pei Yu, Ying Dong, Yonglei Xing, Juan Peng, Gang Ni, Xiaoyong Jin *

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

* Correspondence author. E-mail addresses: jinxy588@163.com

ESI for NJ-ART-12-2022-005977

Fig. S1 PEC degradation system

Fig. S2 TEM images of the as-prepared samples: (a) pure Co₃O₄; (b) S-Co₃O₄; and (c) pure Bi₂WO₆. (d) HRTEM image of the SCB1 composite.

Fig. S3 (a-h) EDS mapping images of S-Co₃O₄/Bi₂WO₆.

Fig. S4 (a) UV-Vis DRS absorption spectra; (b) plots of $(\alpha hv)^{1/2}$ versus hv for pure Bi₂WO₆; and (c) plots of $(\alpha hv)^2$ versus hv for pure Co₃O₄ and S-Co₃O₄.

Fig. S5 XRD patterns of SCB1 material before and after the recycle experiment.

Fig. S6 M–S curves for (a) Bi₂WO₆; (b) Co₃O₄; (c) S-Co₃O₄; and (d) SCB1.

Fig. S7 The maximum energy edge of the VB for (a) $S-Co_3O_4$ and (b) Bi_2WO_6 ; and (c) a schematic illustration of the band structures of $S-Co_3O_4$ and Bi_2WO_6 .

photoelectrocatalyst	Conc.	Light Soure	Degradation	Reaction	Refs
	(mg/L)	$(\lambda > 420 \text{ nm})$	rate (%)	Time (min)	
S-Co ₃ O ₄ /Bi ₂ WO ₆	30	300W	87.4	60	This
		Xe lamn			work
Bi/Bi ₂ WO ₆	10	350W	90	80	work
		Xe lamp			1
		300W			
BiOI/Bi2WO6	20	Ya lamn	84.8	120	2
CeO ₂ /Bi ₂ WO ₆	10	S00 W	91.72	120	3
ZnIn ₂ S ₄ /CF/PVDF	4	300 W	87	180	4
		Xe lamp			
Fe_2O_3/Bi_2WO_6	20	150W	95	90	5
		Xe lamp			
WO ₃ /BiVO ₄	10	300W	90.6	180	6
		Xe lamp			
ZnO/BiVO ₄	20	300W	66.1	120	7
		Xe lamp			
CuO-CSA	25	400Wmetal	96	100	8
		halide lamp			
I, P -TiO2	10	400W	99.7	180	9
		Xe lamp			
NiFe ₂ O ₄ /SnO ₂ QDs	4	300 W	98	70	10
		Xe lamp			
g-C ₃ N ₄ / TiO ₂	10	300 W	95	60	11
		Xe lamp			
rGO/AgCl QDs	20	300 W	85.2	120	12
		Xe lamp			12

Table S1 Comparison of various catalysts for the PEC degradation of TC.

References

- K. Zhou, J. Lu, Y. Yan, C. Zhang, Y. Qiu and W. Li, *RSC Adv.*, 2020, 10, 12068-12077.
- 2. Y. Lu, Y. Sun, J. Li, Y. Xu, Q. Han, L. Wei, J. Sun and J. Guo, *J. Mater. Sci. Mater. Electron.*, 2022, **33**, 23212-23223.
- 3. S. Zhong, C. Lv, S. Zou, F. Zhang and S. Zhang, J. Mater. Sci. Mater. Electron., 2018, 29, 2447-2454.
- B. Gao, J. An, Y. Wang, J. Liu, L. Wang and M. Sillanpää, *J Solid State Chem.*, 2020, 290, 121525.
- 5. S. Adhikari, S. Selvaraj and D.-H. Kim, Appl. Catal. B., 2019, 244, 11-24.
- 6. Q. Zeng, L. Lyu, Y. Gao, S. Chang and C. Hu, Appl. Catal. B., 2018, 238, 309-317.
- J. Feng, L. Cheng, J. Zhang, O. K. Okoth and F. Chen, *Ceram. Int.*, 2018, 44, 3672-3677.
- 8. N. K. Eswar, S. A. Singh and G. Madras, Chem. Eng. J., 2018, 332, 757-774.
- 9. D. Liu, H. Li, R. Gao, Q. Zhao, Z. Yang, X. Gao, Z. Wang, F. Zhang and W. Wu, *J Hazard Mater.*, 2021, **406**, 124309.
- 10. B. Babu, R. Koutavarapu, J. Shim, J. Kim and K. Yoo, *J. Electroanal. Chem.*, 2021, **900**, 115699.
- 11. H. Tang, Q. Shang, Y. Tang, X. Yi, Y. Wei, K. Yin, M. Liu and C. Liu, *J Hazard Mater.*, 2020, **384**, 121248.
- 12. K. Kadeer, A. Reheman, H. Maimaitizi, D. Talifu, Y. Tursun and A. Abulizi, *J. Am. Ceram. Soc.*, 2019, **102**, 5342-5352.