Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information of New Journal of Chemistry

Sesquiterpenoids isolated from the rhizome of Curcuma phaeocaulis Valeton:

antitumor activity, in silico molecular docking and molecular dynamics study

Xiangjian Zhong[#], Xin Yan[#], Weirui Liu, Yuxin Tian, Ruolan Song, Ying Dong, Xueyang Ren, Yuan Zheng, Dongjie Shang, Fang Lv, Xianxian Li, Qingyue Deng, Yingyu He, Ruijuan Yuan *, Gaimei She*

School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.

- # These authors contributed equally to this work.
- * Corresponding author.

The List of Contents

No.	Contents	Page							
1	Table S1. Cartesian Coordinates and Equilibrium Populations of Low-energyConformers of 1S, 4S, 5S, 10R in CH3OH of Compound 1.	S6							
2	Table S2. Free Energy Eummary of Conformer Set of Compound 1	S9							
3	Figure S1. The Experimental ECD Spectrum of 1 (black), and the Calculated ECDSpectra of (1R, 4R, 5R, 10S)-1 (dash red) and (1S, 5S, 6S, 10R)-1 (dash blue)								
4	Table S3. Cartesian Coordinates and Equilibrium Populations of Low-energyConformers of $1S, 4S, 5S, 10S$ in CH3OH of Compound 19								
5	Table S4. Free Energy Summary of Conformer Set of Compound 19 S								
6	Figure S2. The Experimental ECD Spectrum of 19 (black), and the Calculated ECDSpectra of (1R, 4R, 5R, 10R)-19 (dash red) and (1S, 4S, 5S, 10S)-19 (dash blue)								
7	Table S5. Cartesian Coordinates and Equilibrium Populations of Low-energy Conformers of $1S, 4S, 5S, 10S$ in CH3OH of Compound 20S								
8	Table S6. Free energy Summary of Conformer Set of Compound 20	S15							
9	Figure S3 . The Experimental ECD Spectrum of 20 (black), and the Calculated ECD Spectra of (1 <i>R</i> , 4 <i>R</i> , 5 <i>R</i> , 10 <i>R</i>)- 20 (dash red) and (1 <i>S</i> , 4 <i>S</i> , 5 <i>S</i> , 10 <i>S</i>)- 20 (dash blue)	S16							
10	Table S7. Antitumor activities of the isolated compounds against MCF-7, BGC823,Hela, A549, HepG2 cell line	S16							
11	Figure S4. The HR-ESI-MS Spectrum of Compound 1	S17							
12	Figure S5. The IR Spectrum of Compound 1	S17							
13	Figure S6. The UV Spectrum of Compound 1	S18							
14	Figure S7 The ¹ H NMR Spectrum of Compound 1 in CD ₃ OD	S18							
15	Figure S8. The ¹³ C NMR Spectrum of Compound 1 in CD ₃ OD	S19							
16	Figure S9. The DEPT Spectrum of Compound 1 in CD₃OD	S19							

17	Figure S10. The HSQC Spectrum of Compound 1 in CD ₃ OD								
18	Figure S11. The ¹ H- ¹ H COSY Spectrum of Compound 1 in CD ₃ OD	S20							
19	Figure S12. The HMBC Spectrum of Compound 1 in CD₃OD								
20	Figure S13. The NOESY Spectrum of Compound 1 in CD₃OD								
21	Figure S14. The ¹ H NMR Spectrum of Compound 2 in CD ₃ OD	S22							
22	Figure S15. The ¹³ C NMR Spectrum of Compound 2 in CD ₃ OD	S22							
23	Figure S16. The ¹ H NMR Spectrum of Compound 3 in CD ₃ OD								
24	Figure S17. The ¹³ C NMR Spectrum of Compound 3 in CD ₃ OD	S23							
25	Figure S18. The ¹ H NMR Spectrum of Compound 4 in CD ₃ OD	S24							
26	Figure S19. The ¹³ C NMR Spectrum of Compound 4 in CD ₃ OD	S24							
27	Figure S20. The ¹ H NMR Spectrum of Compound 5 in CD ₃ Cl ₃	S25							
28	Figure S21. The ¹³ C NMR Spectrum of Compound 5 in CD ₃ Cl ₃	S25							
29	Figure S22. The ¹ H NMR Spectrum of Compound 6 in CD ₃ OD	S26							
30	Figure S23. The ¹³ C NMR Spectrum of Compound 6 in CD ₃ OD	S26							
31	Figure S24. The ¹ H NMR Spectrum of Compound 7 in CD ₃ OD	S27							
32	Figure S25. The ¹³ C NMR Spectrum of Compound 7 in CD ₃ OD	S27							
33	Figure S26. The ¹ H NMR Spectrum of Compound 8 in CD ₃ OD	S28							
34	Figure S27. The ¹³ C NMR Spectrum of Compound 8 in CD ₃ OD	S28							
35	Figure S28. The ¹ H NMR Spectrum of Compound 9 in CD ₃ Cl ₃	S29							
36	Figure S29. The ¹³ C NMR Spectrum of Compound 9 in CD ₃ Cl ₃	S29							
37	Figure S30. The ¹ H NMR Spectrum of Compound 10 in CD ₃ OD	S30							
38	Figure S31. The ¹³ C NMR Spectrum of Compound 10 in CD ₃ OD	S30							
39	Figure S32. The ¹ H NMR Spectrum of Compound 11 in CD ₃ OD	S31							

40	Figure S33. The ¹³ C NMR Spectrum of Compound 11 in CD ₃ OD	S31
41	Figure S34. The ¹ H NMR Spectrum of Compound 12 in CD ₃ Cl ₃	S32
42	Figure S35. The ¹³ C NMR Spectrum of Compound 12 in CD ₃ Cl ₃	S32
43	Figure S36. The ¹ H NMR Spectrum of Compound 13 in CD ₃ OD	S33
44	Figure S37. The ¹³ C NMR Spectrum of Compound 13 in CD ₃ OD	S33
45	Figure S38. The ¹ H NMR Spectrum of Compound 14 in CD ₃ OD	S34
46	Figure S39. The ¹³ C NMR Spectrum of Compound 14 in CD ₃ OD	S34
47	Figure S40. The ¹ H NMR Spectrum of Compound 15 in CD ₃ OD	S35
48	Figure S41. The ¹³ C NMR Spectrum of Compound 15 in CD₃OD	S35
49	Figure S42. The ¹ H NMR Spectrum of Compound 16 in CD ₃ OD	S36
50	Figure S43. The ¹³ C NMR Spectrum of Compound 16 in CD₃OD	S36
51	Figure S44. The ¹ H NMR Spectrum of Compound 17 in CD ₃ OD	S37
52	Figure S45. The ¹³ C NMR Spectrum of Compound 17 in CD₃OD	S37
53	Figure S46. The ¹ H NMR Spectrum of Compound 18 in CD ₃ OD	S38
54	Figure S47. The ¹³ C NMR Spectrum of Compound 18 in CD ₃ OD	S38
55	Figure S48. The HR-ESI-MS Spectrum of Compound 19	S39
56	Figure S49. The IR Spectrum of Compound 19	S39
57	Figure S50. The UV Spectrum of Compound 19	S40
58	Figure S51. The ¹ H NMR Spectrum of Compound 19 in CD ₃ OD	S40
59	Figure S52. The ¹³ C NMR Spectrum of Compound 19 in CD ₃ OD	S41
60	Figure S53. The DEPT Spectrum of Compound 19 in CD ₃ OD	S41
61	Figure S54. The HSQC Spectrum of Compound 19 in CD ₃ OD	S42
62	Figure S55. The ¹ H- ¹ H COSY Spectrum of Compound 19 in CD ₃ OD	S42

63	Figure S56. The HMBC Spectrum of Compound 19 in CD ₃ OD								
64	Figure S57. The NOESY Spectrum of Compound 19 in CD₃OD								
65	Figure S58. The HR-ESI-MS Spectrum of Compound 20								
66	Figure S59. The IR Spectrum of Compound 20								
67	Figure S60. The UV Spectrum of Compound 20								
68	Figure S61. The ¹ H NMR Spectrum of Compound 20 in CD ₃ OD								
69	Figure S62. The ¹³ C NMR Spectrum of Compound 20 in CD ₃ OD	S46							
70	Figure S63. The DEPT Spectrum of Compound 20 in CD₃OD	S46							
71	Figure S64. The HSQC Spectrum of Compound 20 in CD₃OD	S47							
72	Figure S65. The ¹ H- ¹ H COSY Spectrum of Compound 20 in CD ₃ OD	S47							
72 73	Figure S65. The ¹ H- ¹ H COSY Spectrum of Compound 20 in CD ₃ OD Figure S66. The HMBC Spectrum of Compound 20 in CD ₃ OD	S47 S48							
72 73 74	 Figure S65. The ¹H-¹H COSY Spectrum of Compound 20 in CD₃OD Figure S66. The HMBC Spectrum of Compound 20 in CD₃OD Figure S67. The NOESY Spectrum of Compound 20 in CD₃OD 	S47 S48 S48							
72 73 74 75	Figure S65. The ¹ H- ¹ H COSY Spectrum of Compound 20 in CD ₃ ODFigure S66. The HMBC Spectrum of Compound 20 in CD ₃ ODFigure S67. The NOESY Spectrum of Compound 20 in CD ₃ ODFigure S68. The ¹ H NMR Spectrum of Compound 21 in CD ₃ OD	S47 S48 S48 S48 S49							
72 73 74 75 76	 Figure S65. The ¹H-¹H COSY Spectrum of Compound 20 in CD₃OD Figure S66. The HMBC Spectrum of Compound 20 in CD₃OD Figure S67. The NOESY Spectrum of Compound 20 in CD₃OD Figure S68. The ¹H NMR Spectrum of Compound 21 in CD₃OD Figure S69. The ¹³C NMR Spectrum of Compound 21 in CD₃OD 	S47 S48 S48 S49 S49							
72 73 74 75 76 77	Figure S65. The ¹ H- ¹ H COSY Spectrum of Compound 20 in CD ₃ ODFigure S66. The HMBC Spectrum of Compound 20 in CD ₃ ODFigure S67. The NOESY Spectrum of Compound 20 in CD ₃ ODFigure S68. The ¹ H NMR Spectrum of Compound 21 in CD ₃ ODFigure S69. The ¹³ C NMR Spectrum of Compound 21 in CD ₃ ODFigure S69. The ¹³ C NMR Spectrum of Compound 21 in CD ₃ ODFigure S70. The ¹ H NMR Spectrum of Compound 22 in CD ₃ Cl ₃	\$47 \$48 \$48 \$49 \$49 \$50							
 72 73 74 75 76 77 78 	Figure S65. The ¹ H- ¹ H COSY Spectrum of Compound 20 in CD ₃ ODFigure S66. The HMBC Spectrum of Compound 20 in CD ₃ ODFigure S67. The NOESY Spectrum of Compound 20 in CD ₃ ODFigure S68. The ¹ H NMR Spectrum of Compound 21 in CD ₃ ODFigure S69. The ¹³ C NMR Spectrum of Compound 21 in CD ₃ ODFigure S70. The ¹ H NMR Spectrum of Compound 21 in CD ₃ ODFigure S70. The ¹ H NMR Spectrum of Compound 21 in CD ₃ ODFigure S70. The ¹ H NMR Spectrum of Compound 22 in CD ₃ Cl ₃ Figure S71. The ¹³ C NMR Spectrum of Compound 22 in CD ₃ Cl ₃	S47 S48 S48 S49 S49 S50 S50							
72 73 74 75 76 77 78 79	Figure S65. The ¹ H- ¹ H COSY Spectrum of Compound 20 in CD ₃ ODFigure S66. The HMBC Spectrum of Compound 20 in CD ₃ ODFigure S67. The NOESY Spectrum of Compound 20 in CD ₃ ODFigure S68. The ¹ H NMR Spectrum of Compound 21 in CD ₃ ODFigure S69. The ¹³ C NMR Spectrum of Compound 21 in CD ₃ ODFigure S70. The ¹ H NMR Spectrum of Compound 22 in CD ₃ Cl ₃ Figure S71. The ¹³ C NMR Spectrum of Compound 22 in CD ₃ Cl ₃ Figure S72. The ¹ H NMR Spectrum of Compound 23 in CD ₃ Cl ₃	S47 S48 S48 S49 S49 S50 S51							

 Table S1. Cartesian Coordinates and Equilibrium Populations of Low-energy Conformers of

Compound 1 conformer 1				Compound 1 conformer 2			
С	-0.542352792	-1.305018108	-0.16767212	C	-0.900050662	-1.414756852	-0.45976036
С	-0.903487757	0.040473604	0.555036837	C	-1.046634197	-0.360861729	0.701750757
С	-0.303969562	1.347577163	0.026940351	C	-0.163134445	0.888609579	0.706621669
С	1.2039931	1.347486173	0.073035989	C	1.334450079	0.66567024	0.661618952
С	1.831060986	0.811714949	-1.184173158	C	1.793231828	-0.755792498	0.492489505
С	1.66466857	-0.707159242	-1.357735497	C	1.593158226	-1.30336658	-0.930231339
С	0.23694132	-1.277526573	-1.499536418	C	0.17567965	-1.178134856	-1.528210392
С	-1.887650595	-2.075052109	-0.261085084	C	-2.329148104	-1.603467626	-1.014092219
С	-2.78889837	-1.424121943	0.785986148	C	-3.226602393	-1.26770086	0.173163421
С	-2.444795646	0.065407569	0.677943228	C	-2.571524756	-0.023954643	0.772807629
С	1.900042533	1.730893977	1.160751258	C	2.160481595	1.729428647	0.727412315
С	3.403704905	1.703431026	1.213025442	C	3.655545056	1.63386361	0.642606651
С	1.266308503	2.173367245	2.455214876	C	1.621413097	3.132111699	0.894477748
С	0.374468194	-2.715280995	-2.024376756	C	0.04340758	-2.198269315	-2.665082024
Η	0.115601243	-1.86207369	0.511546888	Η	-0.613544116	-2.364974972	0.012755986
Н	-0.551196938	-0.066514041	1.590766727	Η	-0.849331731	-0.899169074	1.637979558
0	-0.53128705	-0.506362471	-2.448900249	0	-0.040905607	0.144693471	-2.072924101
0	-2.75979655	0.7904167	1.886585779	0	-3.018392676	0.101954738	2.139617925
С	-3.155371093	0.720653125	-0.502793282	C	-2.974089326	1.231843618	0.001566003
0	3.826179136	0.404032804	1.699337753	0	4.292270165	1.968091795	1.901486861
Н	-0.714639926	2.169405014	0.624266737	Н	-0.431282348	1.541341252	-0.129336643
Н	-0.622523449	1.504831381	-1.007344177	Н	-0.408341328	1.457990138	1.618365948
Н	2.903324297	1.022309922	-1.225519813	Η	2.847913614	-0.87024898	0.757558665
Н	1.373066776	1.309830971	-2.049524847	Η	1.238605148	-1.392965493	1.193367774
Н	2.218922967	-0.989716793	-2.264267307	Η	1.86665299	-2.366791162	-0.923454112
Н	2.15280318	-1.224186325	-0.520889383	Η	2.29140339	-0.802444911	-1.615864639
Н	-2.322816723	-1.947855405	-1.258753542	Н	-2.496426189	-2.615710993	-1.394837998
Н	-1.761382842	-3.149161284	-0.094332674	Η	-2.513683143	-0.905269155	-1.83912564
Н	-3.855684561	-1.624464468	0.63095657	Η	-3.185059997	-2.075227175	0.916630252
Н	-2.515712418	-1.766157242	1.793012766	Η	-4.275099985	-1.099284074	-0.096188926
Н	3.754536223	2.483527108	1.904988926	Н	4.035420323	2.378704962	-0.067733677
Н	3.855468634	1.899641302	0.232816707	Η	3.993889786	0.649157468	0.300366647
Н	0.182701243	2.049506165	2.479054928	Η	1.001046191	3.427254358	0.037301002
Н	1.687444122	1.59657966	3.289219697	Η	2.437051073	3.854927875	0.984207737
Н	1.496756099	3.228052785	2.659090974	Η	0.98973302	3.230260755	1.785898518
Н	0.926799983	-2.713919493	-2.971241985	Η	0.06030914	-3.222847061	-2.277907798
Η	-0.604880278	-3.166903587	-2.200175349	Η	0.880990966	-2.086283208	-3.365079419
Н	0.92513322	-3.33925694	-1.311372662	H	-0.888795792	-2.046610242	-3.216475314
Н	-0.067514815	-0.5478094	-3.296031805	H	0.575804563	0.254474952	-2.808626008
Н	-3.71932695	0.897796563	1.919366069	Н	-2.675963003	0.936608093	2.48589638

1*S*, 4S, 5*S*, 10*R* in CH_3OH of Compound **1**.

H -4.24092621 0.6135610/5 -0.386895/64 H -2.562383213 2.132860144 0.046918889 H -2.86203731 0.258010984 -1.449385026 H -4.065926623 1.317128702 -0.00768163 H -2.917139878 1.787149511 -0.555360045 H 2.2617126974 1.20020764 -1.032262971 C
H -2.8620371 0.028010984 -1.449383026 H -2.0173976 -1.07128702 -1.0076816 H -2.917139878 1.787149511 -0.555360045 H -2.617126974 1.20020764 -1.03226297 H 4.775532891 0.454883335 1.87042291 H 3.903989125 1.385947675 2.56774611 C -0.785456754 -1.370015547 -0.318744898 C -0.933246317 -1.398728157 -0.439606490 C -0.842967057 -0.035455717 0.499782726 C -1.129401861 -0.31882524 0.720054155 C -0.249992869 1.213520092 -0.188507265 C 1.030673546 0.535066844 0.93431084 C 1.243631658 -0.083945622 C 1.300673546 0.535066844 0.93431084 C 1.974361995 0.437546683 -1.128508477 C 1.696760644 -0.904958864 0.765584342 C 1.974361995 0.43754683 -0.05775414 C 2.313703883 -1.120379051 -1.4042866
H -2.917139878 1.787149511 -0.535360045 H -2.617126974 1.20020764 -1.03226297 H 4.775532891 0.454883335 1.870422291 H 3.903989125 1.385947675 2.567746411 C -0.785456754 -1.370015547 -0.318744898 C -0.933246317 -1.398728157 -0.439606490 C -0.842967057 -0.035465717 0.499782726 C -1.129401861 -0.35182524 0.720054155 C -0.249992869 1.213520092 -0.188507265 C 0.179235021 0.842838725 0.82636307 C 1.974361995 0.437546683 -1.128508477 C 1.696760644 -0.904958864 0.765584342 C 1.671582643 -1.069230885 -1.057851562 C 1.593509616 -1.405792115 -0.685944726 C -2.244559964 -1.637843847 -0.807527844 C -2.313703883 -1.507125842 -1.12346771 C -3.048212257 -0.400859853 -0.400046959 C 2.365142671
H 4.775532891 0.454883335 1.870422291 H 3.903989125 1.385947675 2.567746411 Compound 1 conformet C -0.785456754 -1.370015547 -0.318744898 C -0.933246317 -1.398728157 -0.439606490 C -0.842967057 -0.035465717 0.499782726 C -1.129401861 -0.35182524 0.720054155 C -0.249992869 1.213520092 -0.18850725 C -0.179235021 0.842838725 0.826363072 C 1.257381096 1.243631658 -0.083945622 C 1.300673546 0.535066844 0.93431084 C 1.974361995 0.437546683 -1.128508477 C 1.696760644 -0.904958864 0.765584342 C 1.071582643 -1.05783162 C 1.593509616 -1.407592115 -0.68594728 C 0.243456811 -1.51923423 -1.453761722 C 0.243459431 -1.20237051 -1.40428665 C -2.244559964 -1.637843847 -0.807527844 C -2.63142671 0.073778348 0.651055265 C 1.366833538 1.906586
Compound 1 conformer 3 Compound 1 conformer 4 C -0.785456754 -1.370015547 -0.318744898 C -0.933246317 -1.398728157 -0.439606490 C -0.842967057 -0.035465717 0.499782726 C -1.129401861 -0.35182524 0.720054155 C -0.249992869 1.213520092 -0.18850726 C -0.179235021 0.842838725 0.826363077 C 1.257381096 1.243631658 -0.083945622 C 1.300673546 0.535066844 0.93431084 C 1.974361995 0.437546683 -1.128508477 C 1.696760644 -0.904958864 0.765584342 C 1.671582643 -1.069230885 -1.057851562 C 1.593509616 -1.405792115 -0.68594728 C 0.243456811 -1.51923423 -1.453761722 C 0.243459431 -1.202379051 -1.40428662 C -2.244559964 -1.637843847 -0.80752784 C -2.313703883 -1.50712584 -0.12204718 C -3.048212257 -0.400
C -0.785456754 -1.370015547 -0.318744898 C -0.933246317 -1.398728157 -0.439606496 C -0.842967057 -0.035465717 0.499782726 C -1.129401861 -0.35182524 0.720054155 C -0.249992869 1.213520092 -0.188507265 C -0.179235021 0.842838725 0.82636307 C 1.257381096 1.243631658 -0.083945622 C 1.300673546 0.535066844 0.9343108 C 1.974361995 0.437546683 -1.128508477 C 1.696760644 -0.904958864 0.765584342 C 1.671582643 -1.069230885 -1.057851562 C 1.593509616 -1.405792115 -0.685944728 C 0.249366811 -1.51923423 -1.453761722 C 0.243459431 -1.202379051 -1.40428665 C -2.244559964 -1.637843847 -0.807527844 C -2.313703883 -1.507125842 -1.12346777 C -3.048212257 -0.400859853 -0.400046959 C -2.63142671 0.073778348 0.651055269 C 1.866833538 1.90658657
C -0.842967057 -0.035465717 0.499782726 C -1.129401861 -0.35182524 0.720054155 C -0.249992869 1.213520092 -0.188507265 C -0.179235021 0.842838725 0.826363077 C 1.257381096 1.243631658 -0.083945622 C 1.300673546 0.535066844 0.9343108 C 1.974361995 0.437546683 -1.128508477 C 1.696760644 -0.904958864 0.765584344 C 1.671582643 -1.069230885 -1.057851562 C 1.593509616 -1.405792115 -0.685944728 C 0.249366811 -1.51923423 -1.453761722 C 0.243459431 -1.202379051 -1.40428665 C -2.244559964 -1.637843847 -0.807527844 C -2.313703883 -1.507125842 -1.12346777 C -3.048212257 -0.400859853 -0.400046959 C -3.298154404 -1.125345623 -0.022504888 C -2.350003145 0.093715084 0.858987717 C 2.63142671 0.073778348 0.651055269 C 1.866833538 1.906586579<
C -0.249992869 1.213520092 -0.188507265 C -0.179235021 0.842838725 0.826363077 C 1.257381096 1.243631658 -0.083945622 C 1.300673546 0.535066844 0.93431084 C 1.974361995 0.437546683 -1.128508477 C 1.6696760644 -0.904958864 0.765584342 C 1.671582643 -1.069230885 -1.057851562 C 1.593509616 -1.405792115 -0.685944728 C 0.249366811 -1.51923423 -1.453761722 C 0.243459431 -1.202379051 -1.40428665 C -2.244559964 -1.637843847 -0.807527844 C -2.313703883 -1.507125842 -1.12346771 C -3.048212257 -0.400859853 -0.40046959 C -3.298154404 -1.125345623 -0.022504886 C -2.350003145 0.093715084 0.858987717 C -2.63142671 0.073778348 0.65105266 C 1.866833538 1.906586579 0.920315666 C 2.166021207 <th< td=""></th<>
C 1.243631658 -0.083945622 C 1.300673546 0.535066844 0.9343108- C 1.974361995 0.437546683 -1.128508477 C 1.696760644 -0.904958864 0.765584342 C 1.671582643 -1.069230885 -1.057851562 C 1.593509616 -1.405792115 -0.685944728 C 0.249366811 -1.51923423 -1.453761722 C 0.243459431 -1.202379051 -1.40428665 C -2.244559964 -1.637843847 -0.807527844 C -2.313703883 -1.507125842 -1.123467771 C -3.048212257 -0.400859853 -0.400046959 C -3.298154404 -1.125345623 -0.022504886 C -2.350003145 0.093715084 0.858987717 C -2.63142671 0.073778348 0.65105266 C 1.866833538 1.906586579 0.920315666 C 2.166021207 1.551762136 1.12020755 C 3.35914413 1.961115635 1.096475115 C 3.653452549 1.392108021 1.2
C1.9743619950.437546683-1.128508477C1.696760644-0.9049588640.765584342C1.671582643-1.069230885-1.057851562C1.593509616-1.405792115-0.685944728C0.249366811-1.51923423-1.453761722C0.243459431-1.202379051-1.40428662C-2.244559964-1.637843847-0.807527844C-2.313703883-1.507125842-1.123467771C-3.048212257-0.400859853-0.400046959C-3.298154404-1.125345623-0.022504885C-2.3500031450.0937150840.858987717C-2.631426710.0737783480.651055269C1.8668335381.9065865790.920315666C2.1660212071.5517621361.120220759C3.3591444131.9611156351.096475115C3.6534525491.3921080211.200379933C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659369C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.567333051H-0.515626248-2.15655190.395265751H-0.0737164628-2.3675001420.040786023H-0.228063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.3377491
C1.671582643-1.069230885-1.057851562C1.593509616-1.405792115-0.685944728C0.249366811-1.51923423-1.453761722C0.243459431-1.202379051-1.40428663C-2.244559964-1.637843847-0.807527844C-2.313703883-1.507125842-1.12346777C-3.048212257-0.400859853-0.400046959C-3.298154404-1.125345623-0.022504888C-2.3500031450.0937150840.858987717C-2.631426710.0737783480.651055269C1.8668335381.9065865790.920315666C2.1660212071.5517621361.120220759C3.3591444131.9611156351.096475115C3.6534525491.3921080211.20037935C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659369C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.56733051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786022H-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.942776663O-2.8288397311.4562035781.33774911
C0.249366811-1.51923423-1.453761722C0.243459431-1.202379051-1.40428665C-2.244559964-1.637843847-0.807527844C-2.313703883-1.507125842-1.12346777C-3.048212257-0.400859853-0.400046959C-3.298154404-1.125345623-0.022504885C-2.3500031450.0937150840.85898717C-2.631426710.0737783480.651055265C1.8668335381.9065865790.920315666C2.1660212071.5517621361.120220755C3.3591444131.9611156351.096475115C3.6534525491.3921080211.200379935C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659365C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.56733051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786023H-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115
C-2.244559964-1.637843847-0.807527844C-2.313703883-1.507125842-1.12346777C-3.048212257-0.400859853-0.400046959C-3.298154404-1.125345623-0.022504885C-2.3500031450.0937150840.858987717C-2.631426710.0737783480.651055265C1.8668335381.9065865790.920315666C2.1660212071.5517621361.120220755C3.3591444131.9611156351.096475115C3.6534525491.3921080211.200379935C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659366C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.567333051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786022H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-2.252083736-0.757090865-2.588216784O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115
C-3.048212257-0.400859853-0.400046959C-3.298154404-1.125345623-0.022504889C-2.3500031450.0937150840.858987717C-2.631426710.0737783480.651055269C1.8668335381.9065865790.920315666C2.1660212071.5517621361.120220759C3.3591444131.9611156351.096475115C3.6534525491.3921080211.20037933C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659369C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.567333051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786022H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-2.652087596-0.8935339761.881056248O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768 <th< td=""></th<>
C-2.3500031450.0937150840.858987717C-2.631426710.0737783480.651055269C1.8668335381.9065865790.920315666C2.1660212071.5517621361.120220759C3.3591444131.9611156351.096475115C3.6534525491.3921080211.200379935C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659369C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.567333051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786022H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.942776663O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
C1.8668335381.9065865790.920315666C2.1660212071.5517621361.120220759C3.3591444131.9611156351.096475115C3.6534525491.3921080211.200379935C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659369C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.567333051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786022H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
C3.3591444131.9611156351.096475115C3.6534525491.3921080211.20037934C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659369C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.567333051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786023H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
C1.1035407242.6345029832.00663028C1.6825445362.9816300651.214659369C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.567333051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786023H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
C0.318318468-3.000618485-1.852743892C0.164410553-2.198847561-2.567333051H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786023H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776663O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
H-0.515626248-2.156555190.395265751H-0.737164628-2.3675001420.040786022H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776665O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
H-0.288088699-0.1615775661.440632253H-1.05465788-0.9098423611.66258055O-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776665O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
O-0.222063673-0.757090865-2.588216784O0.1408850390.136747878-1.942776662O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
O-2.652087596-0.8935339761.881056248O-3.1972118920.2167634751.97099216C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
C-2.8288397311.4562035781.337749114C-2.8863534161.356182724-0.139170821O3.8037354741.0876051672.164878733O4.231790071.929616265-0.017788411H-0.6559396622.1085682140.28688115H-0.4803714881.4249752631.71283379H-0.5472293591.237152131-1.242245768H-0.3231604821.51133508-0.027266327
O 3.803735474 1.087605167 2.164878733 O 4.23179007 1.929616265 -0.017788411 H -0.655939662 2.108568214 0.28688115 H -0.480371488 1.424975263 1.71283379 H -0.547229359 1.237152131 -1.242245768 H -0.323160482 1.51133508 -0.027266327
H -0.655939662 2.108568214 0.28688115 H -0.480371488 1.424975263 1.71283379 H -0.547229359 1.237152131 -1.242245768 H -0.323160482 1.51133508 -0.027266327
H -0.547229359 1.237152131 -1.242245768 H -0.323160482 1.51133508 -0.027266327
H 3.057868186 0.554494633 -1.053954524 H 1.054666586 -1.530746632 1.39894703
Н 1.684202783 0.800630019 -2.12389695 Н 2.719409057 -1.08331609 1.106290448
Н 1.887723257 -1.445878142 -0.048414947 Н 1.81726917 -2.480748141 -0.68292085
Н 2.376293676 -1.572015843 -1.735168005 Н 2.372767529 -0.924375517 -1.293629652
Н -2.287294753 -1.807121925 -1.885584076 Н -2.499294455 -2.508456038 -1.524298057
H -2.646531899 -2.528990343 -0.316183965 H -2.384837074 -0.800536169 -1.959082019
Н -4.111462766 -0.601215406 -0.226067399 Н -3.376674952 -1.938778473 0.711624886
Н -2.970291507 0.380566042 -1.166255905 Н -4.304507581 -0.89307959 -0.388018538
H 3.656966583 2.967687845 1.414042282 H 4.033948435 1.963520354 2.06189214
Н 3.904252776 1.730603847 0.174720535 Н 3.959727831 0.348206316 1.326080463
Н 0.794346199 3.63625222 1.677558821 Н 1.159850829 3.296002026 0.301980126
H 1.739790726 2.76448176 2.887654133 H 2.521023057 3.666660971 1.368002924
H 0.204022568 2.101590955 2.326218668 H 0.97615335 3.119947263 2.04346925
Н 0.760129917 -3.596038433 -1.045823121 Н 0.097800742 -3.228555788 -2.199488427
Н 0.94652554 -3.118191538 -2.743723937 Н 1.065876186 -2.117206663 -3.187466807
Н -0.676232624 -3.398746324 -2.074896806 Н -0.706206549 -1.992562438 -3.19608773
H 0.399356156 -0.904970621 -3.313307201 H 0.842792822 0.233501008 -2.5996417
H -2.149887322 -0.650430784 2.670215347 H -2.858186856 1.03803844 2.350574251

Η	-2.773828876	2.209795828	0.547023576	Η	-3.965668987	1.503278807	-0.25210416
Η	-2.237327984	1.806378204	2.192722028	Η	-2.433148248	1.313323136	-1.134333471
Η	-3.873924472	1.373984792	1.65432611	Η	-2.472775276	2.228693028	0.378397917
Η	3.464105689	0.20701157	1.957241379	Η	5.18459517	2.000730322	0.122137522
Co	mpound 1 conform	ner 5					
С	-0.589687068	-1.266253629	-0.16822939	Η	2.912547542	0.933103283	-1.294856751
С	-0.897851518	0.093827599	0.550886181	Η	1.379097496	1.276189352	-2.083855364
С	-0.257607912	1.376688544	0.010647717	Η	2.13506318	-1.05123442	-2.325459672
С	1.2497891	1.313129678	0.040403206	Η	2.102102892	-1.291151676	-0.582136025
С	1.835416348	0.758157027	-1.229736129	Η	-1.867846846	-3.067895016	-0.046016434
С	1.612228762	-0.752837864	-1.405482652	Η	-2.41067809	-1.865184412	-1.21732717
С	0.162446438	-1.272763731	-1.51559269	Η	-3.900711586	-1.469098304	0.687135612
С	-1.961314684	-1.992691299	-0.225904117	Η	-2.551539296	-1.638053614	1.833381085
С	-2.826839117	-1.300528942	0.825217514	Η	3.939234147	1.553753314	0.208898057
С	-2.44221214	0.171040313	0.691707668	Η	3.884243067	2.355497224	1.785684656
С	1.968485508	1.656237881	1.128293422	Η	1.637125875	3.187094834	2.606383998
С	3.467483478	1.52927631	1.197643011	Η	1.76486717	1.557977879	3.260047024
С	1.361418268	2.139740955	2.421631896	Η	0.273883079	2.061241761	2.45633955
С	0.238174908	-2.716264561	-2.037313931	Η	0.778610332	-3.35734755	-1.331699058
Η	0.064733549	-1.837964439	0.50223812	Η	0.773335326	-2.738143038	-2.993757737
Η	-0.539324944	-0.02086196	1.583338036	Η	-0.759785362	-3.132865559	-2.193943271
0	-0.5953283	-0.476776451	-2.452443628	Η	-0.154135689	-0.542698667	-3.310027669
0	-2.821843174	0.848502187	1.907722716	Η	-2.680597675	1.795095296	1.775197783
С	-3.13595772	0.833884241	-0.494207528	Η	-2.821421289	0.38250046	-1.439373949
0	3.871636098	0.330529457	1.906284649	Η	-4.22157525	0.730304899	-0.392583285
Η	-0.58451064	1.546110216	-1.018903457	Η	-2.894048619	1.901955712	-0.540014915
Η	-0.623633265	2.220211401	0.609394514	Η	3.442527619	-0.411434689	1.460388408

conformer 3

conformer 5

conformer 2

conformer 1

	Conformer	Enorgy (2.11)	Relative Energy	Equilibrium Mole
	No.	Ellergy (a.u.)	(kcal/mol)	Fraction
	1	-509883.135239208	0.02974544698	45.94%
	2	-509881.239573289	1.92541136587	1.87%
1 <i>S</i> , 4 <i>S</i> , 5 <i>S</i> , 10 <i>R</i>	3	-509881.239060502	1.92592415347	1.87%
	4	-509880.895126919	2.26985773561	1.04%
	5	-509883.164984655	0.00000000000	48.30%

Table S2. Free Energy Summary of Conformer set of Compound 1

Figure S1. The Experimental ECD Spectrum of **1** (black), and the Calculated ECD Spectra of (1*R*, 4*R*, 5*R*, 10*S*)-**1** (dash red) and (1*S*, 5*S*, 6*S*, 10*R*)-**1** (dash blue)

Table S3. Cartesian Coordinates and Equilibrium Populations of Low-energy Conformers of 1S, 4S, 5S, 10S in CH₃OH of Compound **19**

Compound 19 conformer 1				Compound 19 conformer 2			
С	-3.152444643	-1.44660071	0.010810918	С	-3.143030241	-1.499052726	0.052565127
С	-3.250069877	-0.033563936	-0.561438193	С	-3.316678195	-0.032827621	-0.337981954
С	-2.118837381	0.882890144	-0.076041897	С	-2.175762477	0.858751814	0.170948733

C	-0.747331274	0.192058557	-0.318584264	C	-0.817151055	0.261624674	-0.268416879
С	-0.610665539	-1.288497287	0.136015065	C	-0.604413036	-1.252866917	0.005049344
С	-1.823254055	-2.07220173	-0.394145641	C	-1.837350312	-2.024123213	-0.518565939
C	0.434673501	1.021845642	0.1838253	C	0.380355164	1.075889403	0.226733735
С	1.764947193	0.394093682	-0.150246111	C	1.698697392	0.535115014	-0.269552246
С	1.843382656	-0.902848404	-0.467671076	C	1.782853615	-0.712586549	-0.740659221
С	0.66727756	-1.83334827	-0.537298578	C	0.628240856	-1.668599191	-0.82605382
С	2.979990723	1.316530798	-0.111387468	С	2.895916737	1.482060501	-0.2005113
С	2.952364142	2.291337533	-1.290774404	С	4.205097469	0.857078523	-0.663409206
С	4.316243442	0.574871276	-0.09154775	С	3.060270122	2.034712642	1.21954813
0	2.896405027	2.154575471	1.073196911	0	2.677877905	2.589090977	-1.123257889
0	-1.714422496	-3.435666107	0.047492402	0	-1.775150194	-3.43149787	-0.238294324
С	-2.377743786	1.360188456	1.349218256	С	-2.332516414	1.141182016	1.665714261
С	-0.456199663	-1.456123872	1.655701616	С	-0.318783212	-1.588137327	1.476661127
Η	-1.766046243	-2.045294472	-1.497917847	Н	-1.869685286	-1.875494628	-1.613439765
Η	-0.661308026	0.153967885	-1.420025071	Н	-0.833104767	0.356152551	-1.367340272
0	-2.150164243	2.106815297	-0.855324061	0	-2.236784053	2.131435382	-0.52895257
Η	-3.972789384	-2.062535313	-0.381172275	Н	-3.160147929	-1.625573873	1.142428509
Η	-3.252797076	-1.442455101	1.103496092	Н	-3.971442859	-2.094101409	-0.350109353
Η	-3.190719918	-0.095141761	-1.658554628	Н	-3.335929209	0.044875724	-1.433704396
Η	-4.215400295	0.425498592	-0.315808119	Н	-4.273446816	0.357287812	0.03367471
Η	0.373447471	2.028709221	-0.242867046	Н	0.394472436	1.101143103	1.325034936
Η	0.369430822	1.163284416	1.270843466	Η	0.247041824	2.118200272	-0.088768608
Η	2.806452198	-1.344743329	-0.714395565	Н	2.733865038	-1.094806063	-1.103740917
Η	0.455963319	-2.059696153	-1.59550975	Н	0.97390421	-2.66266332	-0.505943314
Η	0.937977943	-2.794342979	-0.080809828	Η	0.340131333	-1.778920496	-1.885105602
Η	2.027295725	2.874247506	-1.303926554	Н	4.138062634	0.517443235	-1.701368079
Η	3.032047627	1.739798906	-2.231976445	Н	4.479427123	0.008421066	-0.030780291
Η	3.796732054	2.985494148	-1.218207445	Н	4.998531126	1.607608201	-0.598135666
Η	4.477380933	0.010366929	-1.014870094	Η	2.176215309	2.60035308	1.531851426
Η	4.366958356	-0.119518936	0.754287087	Н	3.210171317	1.215765211	1.931664458
Η	5.124579425	1.306168081	0.004985558	Η	3.928462031	2.700555985	1.260539414
Η	2.887593013	1.566227166	1.840264126	Η	1.970402254	3.142433245	-0.768920089
Η	-2.438653786	-3.927651421	-0.358931613	Η	-1.001244369	-3.795299497	-0.686408584
Η	-1.583592399	2.02633406	1.696653734	Η	-3.274618342	1.680330379	1.82443694
Η	-2.463545718	0.529931901	2.050829302	Η	-1.517971855	1.764579808	2.043791974
Η	-3.321546599	1.915267426	1.366131222	Η	-2.3777691	0.22862036	2.263199912
Η	0.430487589	-0.923864836	2.012344111	Η	-0.106891101	-2.65709947	1.572361483
Η	-0.327779404	-2.514794775	1.897205361	Η	-1.153444729	-1.35900098	2.141450675
Η	-1.317328975	-1.08922085	2.216716648	Η	0.559646857	-1.041955213	1.832943531
Η	-2.026989935	1.86560715	-1.783585452	Η	-3.0713272	2.552895387	-0.284178144
Co	mpound 19 confor	rmer 3		Co	mpound 19 conform	ner 4	
C	-3.148837386	-1.456201627	0.058899335	C	-4.446350845	-0.997456628	-2.471453534
С	-3.316685731	0.052868036	-0.10679145	C	-4.130301361	-0.182158629	-1.220490185
C	-2.118911442	0.845465771	0.433722523	C	-2.627574372	-0.080870567	-0.950961461

C	-0.805738145	0.283930869	-0.178292587	C	-1.903952574	0.426581327	-2.230509454
С	-0.614217638	-1.258900302	-0.144522736	C	-2.258964502	-0.2811622	-3.570076386
С	-1.897756084	-1.918133768	-0.67812833	C	-3.791135389	-0.353251956	-3.686566289
С	0.443163057	0.997109388	0.342558152	C	-0.386188014	0.524181651	-2.060104225
С	1.711152138	0.503502489	-0.307546331	C	0.299899656	1.101789835	-3.273811703
С	1.734223487	-0.664956507	-0.955653056	C	-0.324016559	1.132944104	-4.455969802
С	0.547550365	-1.572098719	-1.111713582	C	-1.717940823	0.62906785	-4.693221621
С	2.947401311	1.391837401	-0.174057273	C	1.713539172	1.637469194	-3.062657264
С	3.2265297	1.703644343	1.2966295	C	1.683940831	2.931807614	-2.24720009
С	2.769484213	2.689203035	-0.975723768	C	2.483642634	1.870325172	-4.361972883
0	4.134069709	0.724975321	-0.645869779	0	2.454242058	0.691604848	-2.245101308
0	-1.736241245	-3.345212192	-0.615987672	0	-4.124138317	-1.043493964	-4.902774224
С	-2.159913972	0.925528993	1.95607925	C	-2.086185014	-1.379707814	-0.356931419
С	-0.239764035	-1.80775501	1.241477638	C	-1.620828798	-1.669437182	-3.733422942
Η	-2.001992151	-1.612679034	-1.73552216	Η	-4.158572804	0.687422033	-3.751015979
Η	-0.886365896	0.531033292	-1.252636016	Η	-2.279082505	1.457493686	-2.344140231
0	-2.253952371	2.22929573	0.016707225	0	-2.513697349	0.952264421	0.065199094
Н	-4.02263664	-1.974152876	-0.358276184	Η	-4.110261786	-2.036802422	-2.366512333
Η	-3.090285485	-1.736418797	1.118122212	Η	-5.533040443	-1.029723583	-2.625369078
Η	-3.418854986	0.279226889	-1.178920403	Η	-4.627444972	-0.60449142	-0.338884135
Η	-4.231767976	0.404020382	0.385437194	Η	-4.514588968	0.839070058	-1.351723539
Η	0.324675264	2.075152127	0.186366424	Η	0.043520672	-0.462663309	-1.84298618
Η	0.529371451	0.865720911	1.430247583	Η	-0.152117408	1.140002367	-1.182923979
Η	2.661256569	-1.011901456	-1.407772355	Η	0.176519613	1.558268865	-5.32311862
Η	0.184305742	-1.512765722	-2.150953781	Η	-1.748564453	0.090151585	-5.649140882
Η	0.866563046	-2.612950999	-0.970921117	Η	-2.391463383	1.492557611	-4.81995623
Η	3.358570584	0.776783221	1.864890247	Η	2.707256514	3.275361062	-2.061239587
Η	2.401626732	2.269014666	1.737641085	Η	1.189042235	2.785343713	-1.28338269
Η	4.138593673	2.303662228	1.378105081	Η	1.148410173	3.707902167	-2.801577857
Η	1.913274132	3.270320598	-0.622420946	Η	3.503883327	2.180388495	-4.115989781
Η	2.613973733	2.460047359	-2.036525153	Η	2.025885888	2.659702832	-4.965660802
Η	3.668504236	3.306244675	-0.874354011	Н	2.529321403	0.955372949	-4.96284974
Η	4.065139557	0.64040234	-1.60607506	Н	2.482210304	-0.144258952	-2.730160374
Η	-2.516197783	-3.740766125	-1.02483412	Н	-5.083991229	-1.008598513	-4.99905292
Η	-1.321446687	1.507634239	2.347834283	Η	-2.214654095	-2.232264187	-1.025989447
Η	-2.142818223	-0.059968489	2.422897728	Η	-2.62747672	-1.594463197	0.570797071
Η	-3.088653274	1.423785359	2.253488749	Н	-1.020361641	-1.298108859	-0.118521275
Η	0.665126149	-1.321369286	1.617190557	Н	-1.843993839	-2.057781619	-4.730922579
Η	-0.033465899	-2.879000825	1.166790739	Н	-1.984750396	-2.399390794	-3.007910172
Η	-1.028014773	-1.674722567	1.984567984	Н	-0.532924808	-1.608618416	-3.636945032
Η	-2.265037024	2.243544639	-0.95015562	Η	-1.626311112	0.904106774	0.443058068
Co	mpound 19 confor	mer 5		Co	mpound 19 conform	ner 6	
С	-3.122209722	-1.465067929	0.110260222	C	-3.1257761	-1.454339443	0.162123532
C	-3.333147832	0.015062187	-0.203377876	C	-3.293482055	0.052029714	-0.018363227
C	-2.175672364	0.893865579	0.289515796	C	-2.077340075	0.846615094	0.461933702

C	-0.829524412	0.323702106	-0.238953828	C	-0.795984888	0.281463738	-0.210844556
С	-0.591017748	-1.203284365	-0.056888449	C	-0.596303434	-1.259023808	-0.150921118
С	-1.839741574	-1.951957367	-0.552719083	C	-1.904759101	-1.945307547	-0.604468875
С	0.383872941	1.122495458	0.239537245	C	0.478261645	1.010886938	0.224342633
С	1.680959294	0.612829962	-0.337745683	C	1.720208778	0.495896069	-0.4627667
С	1.75421297	-0.609418115	-0.87527354	C	1.707872979	-0.685999171	-1.086876171
C	0.601635828	-1.566692354	-0.966225684	C	0.512250277	-1.588498483	-1.170789061
C	2.871398683	1.566432626	-0.275749362	C	2.956515525	1.392875244	-0.402399419
C	2.697715999	2.708674244	-1.27864031	C	4.196414012	0.774638535	-1.034862413
C	4.218962079	0.882913132	-0.504610864	C	3.261166501	1.792274458	1.045482906
0	2.892181995	2.207707264	1.027998017	0	2.708966152	2.595386854	-1.188450349
0	-1.634296118	-3.360312397	-0.353330294	0	-1.80520439	-3.378649917	-0.581294608
C	-2.257427677	1.104139211	1.797977413	C	-2.044215726	0.93424399	1.987075429
С	-0.230249964	-1.607001807	1.381631746	C	-0.148003081	-1.777500604	1.225153268
Η	-1.927736068	-1.749262556	-1.636019937	Η	-2.051800325	-1.697196317	-1.66616129
Η	-0.892368199	0.466243311	-1.333317795	Η	-0.943615805	0.510283414	-1.279620577
0	-2.346011884	2.229589972	-0.252506218	0	-2.297732181	2.187236647	-0.053941399
Η	-3.968806116	-2.049514864	-0.274068693	Η	-4.012566124	-1.974862423	-0.218946752
Η	-3.080407542	-1.64040731	1.192461131	Η	-3.038856105	-1.716157709	1.22589675
Η	-3.412543891	0.135314577	-1.294470324	Η	-4.187612986	0.411308367	0.505375276
Η	-4.272032528	0.379710202	0.230783359	Η	-3.432813317	0.270066364	-1.086397381
Η	0.24601485	2.177461669	-0.020998224	Η	0.610983145	0.928883963	1.311970791
Η	0.450080478	1.10120867	1.335322934	Η	0.360889784	2.085353591	0.023677762
Η	2.692967407	-0.962488293	-1.296701403	Η	2.604317952	-1.045282486	-1.586630104
Η	0.262537414	-1.618156105	-2.014071933	Η	0.098776301	-1.534466428	-2.191373663
Η	0.95217777	-2.577820984	-0.72137246	Η	0.832363381	-2.630398226	-1.039527649
Η	1.765230913	3.253018356	-1.105376666	Η	5.024809724	1.485357949	-0.960022846
Η	2.686375888	2.31038328	-2.297273079	Η	4.480796516	-0.144940471	-0.516242651
Η	3.530978102	3.41384384	-1.18655488	Η	4.032615361	0.548508876	-2.092676825
Η	4.301581443	0.482482939	-1.519453277	Η	3.427414377	0.900258993	1.659455578
Η	4.368528003	0.062198633	0.205501435	Η	2.434646204	2.359650697	1.485851652
Η	5.016872947	1.618753276	-0.364496384	Η	4.161457703	2.414546879	1.076884935
Η	2.994881507	1.508887011	1.687997989	Η	2.054883353	3.131173715	-0.72222692
Η	-2.393293879	-3.818348063	-0.735344556	Η	-1.801522468	-3.657677458	0.343625249
Η	-1.451294881	1.750668976	2.154948789	Η	-1.971234576	-0.044599482	2.464464127
Η	-2.211351288	0.162101508	2.344781109	H	-1.202605557	1.541692576	2.337090382
Η	-3.212007299	1.586307771	2.033744011	H	-2.970516315	1.408118581	2.329160731
Η	0.655769942	-1.062720311	1.72111731	H	-0.922624776	-1.699057248	1.991225617
Η	0.001625633	-2.67510129	1.414836525	H	0.139386105	-2.831888461	1.149573447
Η	-1.034718617	-1.420322487	2.094756043	H	0.731210937	-1.232028896	1.578927414
H	-2.343702485	2.155880836	-1.21663027	H	-1.704637325	2.78912333	0.413513372

Table S4. Free energy summary of conformer set of compound 19

	Conformer		Relative Energy	Equilibrium Mole	
	No.		(kcal/mol)	Fraction	
	1	-509894.839040418	0.291108009	22.51%	
	2	-509894.070797766	1.059350661	6.15%	
1 <i>S</i> , 4 <i>S</i> , 5 <i>S</i> , 10 <i>S</i>	3	-509895.130148427	0	36.81%	
	4	-509894.323651712	0.806496715	9.43%	
	5	-509894.800863102	0.329285325	21.11%	
	6	-509893.815545909	1.314602518	4.00%	

Figure S2. The experimental ECD spectrum of **19** (black), and the calculated ECD spectra of (1*R*, 4*R*, 5*R*, 10*R*)-**19** (dash red) and (1*S*, 4*S*, 5*S*, 10*S*)-**19** (dash blue)

Compound 20 conformer 1			Compound 20 conformer 2				
С	2.595233165	2.127128598	0.322497666	C	2.532786602	2.108218897	0.113876063
С	3.063416459	0.754404486	-0.156320823	C	2.970583179	0.724352217	-0.363438193
С	2.170217646	-0.392482472	0.337579105	C	2.145970145	-0.415646478	0.251983354
С	0.697040337	-0.064786722	-0.012879456	C	0.640661406	-0.111667004	0.045099803
С	0.173049193	1.330619669	0.438657259	C	0.14808548	1.291732818	0.505127046
С	1.152992291	2.38756572	-0.104175588	C	1.051832353	2.337858475	-0.173500345
С	-0.283984903	-1.193390833	0.361431386	C	-0.285091224	-1.232977798	0.553167999
С	-1.622888679	-0.951614119	-0.287993426	C	-1.690893543	-1.025879445	0.049274533
С	-2.191381606	0.392347478	0.089359671	C	-2.235308163	0.324452827	0.438632088
С	-1.20047946	1.520575088	-0.241587968	C	-1.29144928	1.444578433	-0.032239646
С	-2.179159282	-1.83112307	-1.143176862	C	-2.323563448	-1.94132181	-0.708171275
С	-3.479593772	-1.581633273	-1.854800139	C	-3.7162512	-1.759879278	-1.245939185
C	-1.556279294	-3.175786572	-1.46086833	C	-1.671300512	-3.251932022	-1.111788144
0	0.705416842	3.683768807	0.327284128	0	0.631912763	3.645046281	0.252146126
C	2.424857978	-0.721457474	1.802757567	C	2.554521082	-0.697608578	1.691798522
C	-9.95428E-05	1.493595977	1.961951397	C	0.133123529	1.50597732	2.031575009
Η	1.10913658	2.335818865	-1.207599242	Η	0.897946476	2.24311889	-1.264212312
Η	0.691809074	-0.017034122	-1.117725865	Η	0.522704144	-0.098004277	-1.054396425
0	2.554422771	-1.60303054	-0.363309138	0	2.469087351	-1.643445395	-0.449396928
0	-4.542303327	-2.423049787	-1.344199786	0	-3.728159861	-1.514121158	-2.674223716

of 1S, 4S, 5S, 10S in CH₃OH of Compound 20

Table S5. Cartesian Coordinates and Equilibrium Populations of Low-energy Conformers

Η	3.23918456	2.90582169	-0.1079329	Η	3.119462973	2.878009198	-0.405394008
Η	2.685644858	2.213833973	1.412240115	Η	2.730424354	2.233917517	1.185383942
Η	4.098507856	0.565847012	0.153908716	Η	4.033620823	0.557693889	-0.149979777
Η	3.047230393	0.740045554	-1.256484502	Η	2.848756	0.672951682	-1.455827428
Η	0.14975854	-2.145918255	0.053844197	Η	0.12173553	-2.194791641	0.237300594
Η	-0.411221456	-1.232864712	1.452207034	Η	-0.297520788	-1.236570875	1.651926246
Η	-2.380303954	0.394324129	1.173433361	Η	-2.328052851	0.372139396	1.533957178
Η	-3.150273521	0.5980281	-0.391787401	Η	-3.231729308	0.509580575	0.031635487
Η	-1.624666617	2.48427798	0.062154421	Η	-1.693440813	2.41598965	0.277363984
Η	-1.056463643	1.553051395	-1.331405871	Η	-1.261934553	1.437689614	-1.131628813
Η	-3.382035446	-1.862990353	-2.910654828	Η	-4.229961164	-0.905279363	-0.804653114
Η	-3.78366953	-0.530046039	-1.818128444	Η	-4.313955517	-2.658808332	-1.026210011
Η	-0.692044842	-3.07068135	-2.1301681	Η	-0.767651482	-3.098080951	-1.713187934
Η	-2.284992832	-3.818066813	-1.96378774	Η	-2.358854438	-3.862882117	-1.706231511
Η	-1.21389664	-3.704816518	-0.566474826	Η	-1.382048699	-3.850837944	-0.240647026
Η	1.308858324	4.337269932	-0.047873422	Η	1.189040325	4.289544969	-0.201839101
Η	1.782613435	-1.541561636	2.137520591	Η	1.944717099	-1.496261204	2.124348873
Η	2.24975642	0.138399367	2.4497688	Η	2.459548959	0.187314897	2.321448431
Η	3.468311068	-1.032136853	1.920993036	Η	3.601735351	-1.017461189	1.707725657
Η	-0.359933809	0.578246701	2.437770141	Η	-0.209622396	0.618971418	2.569824611
Η	-0.7297656	2.282666017	2.168174751	Η	-0.547659316	2.325785551	2.280359225
Η	0.928655907	1.780012016	2.459048945	Η	1.114799758	1.772146123	2.428000771
Η	2.423034516	-1.448262659	-1.308852309	Η	2.230041496	-1.521851719	-1.378547632
Η	-4.594710453	-2.253914385	-0.394395323	H	-3.381648623	-2.30176206	-3.112503019

conformer 1conformer 2The optimized conformers of (15,45,55,105)-20

Table S6. Free energy summary of conformer set of compound 20

	Conformer	Enorgy (a.u.)	Relative Energy	Equilibrium Mole	
	No.	Energy (a.u.)	(kcal/mol)	Fraction	
	1	-509878.916036390	0.00000000000	69.50%	
13, 43, 53, 103	2	-509878.422663161	0.49337322952	30.21%	

Figure S3. The Experimental ECD Spectrum of 20 (black), and the Calculated ECD Spectra of (1*R*, 4*R*, 5*R*, 10*R*)-20 (dash red) and (1*S*, 4*S*, 5*S*, 10*S*)-20 (dash blue)

Table S7. Antitumor activities of the isolated compounds against MCF-7, BGC823, Hela, A549, HepG2 cell line

			-		
Compounds	IC _50 of MCF-7 (μ M)	$IC_{50} of BGC823~(\mu M)$	IC_{50} of Hela (μM)	$IC_{50} of A549~(\mu M)$	IC50 of HepG2 (µM)
1	40.73 ± 0.42	340.53 ± 6.72	$283.35\ \pm\ 5.72$	$460.53 ~\pm~ 10.58$	$332.76 \ \pm \ 12.43$
2	91.64 ± 3.18	361.26 ± 9.81	$301.15 ~\pm~ 14.93$	$464.75 \ \pm \ 13.47$	$369.49~\pm~7.78$
3	90.48 ± 2.41	> 500	$203.87~\pm~\textbf{16.32}$	> 500	> 500
4	100.74 ± 9.71	$269.76 \ \pm \ 12.53$	$398.54~\pm~9.47$	$401.26 ~\pm~ 16.51$	$365.68\ \pm\ 12.45$
5	> 500	> 500	> 500	> 500	> 500
6	147.13 ± 16.26	$243.56 \ \pm \ 19.34$	$167.57\ \pm\ 12.09$	$387.46 \ \pm \ 13.64$	$247.13\ \pm\ 17.43$
7	101.70 ± 10.01	$211.57~\pm~16.06$	$\textbf{234.64}~\pm~\textbf{9.01}$	$306.87 ~\pm~ 17.24$	$\textbf{224.89}~\pm~\textbf{21.03}$
8	229.34 ± 21.96	$245.54\ \pm\ 20.43$	$356.87 \ \pm \ 16.58$	$324.34 \ \pm \ 13.48$	327.46 ± 9.73
9	249.08 ± 27.08	443.35 ± 23.36	> 500	> 500	389.38 ± 17.74
10	113.59 ± 6.16	$387.34 \ \pm \ 16.53$	$\textbf{412.76}~\pm~\textbf{21.11}$	$415.78 ~\pm~ 26.86$	$315.35 ~\pm~ 16.34$
11	117.03 ± 11.89	$315.30 \ \pm \ 21.89$	$213.56\ \pm\ 10.90$	$315.53\ \pm\ 13.46$	$317.06 ~\pm~ 21.69$
12	401.01 ± 23.33	> 500	> 500	> 500	> 500
13	160.24 ± 20.04	$357.30 \ \pm \ 26.67$	$425.67\ \pm\ 13.46$	$409.35 ~\pm~ 11.36$	369.78 ± 22.24
14	249.19 ± 29.26	>500	>500	>500	>500
15	297.03 ± 12.73	> 500	> 500	> 500	> 500
16	148.09 ± 11.16	$245.57 \ \pm \ 16.24$	$\textbf{387.20}~\pm~\textbf{16.86}$	$341.35 ~\pm~ 14.74$	$457.30\ \pm\ 26.47$
17	173.83 ± 21.94	$357.30\ \pm\ 26.67$	>500	>500	>500
18	158.03 ± 13.68	$335.46 \ \pm \ 12.35$	$457.34\ \pm\ 8.48$	$379.36 \ \pm \ 26.12$	$414.08 \ \pm \ 22.45$
19	92.01 ± 5.31	$289.47 \ \pm \ 28.44$	$397.34 \ \pm \ 24.35$	$454.35 \ \pm \ 21.43$	$453.34\ \pm\ 25.76$
20	58.77 ± 0.40	$321.42 \ \pm \ 12.57$	$456.36\ \pm\ 22.39$	$457.00 \ \pm \ 22.19$	$482.14 \ \pm \ 8.24$
21	148.63 ± 3.02	$387.64 \ \pm \ 19.69$	$387.08\ \pm\ 25.23$	$338.58 ~\pm~ 23.53$	$455.35 \ \pm \ 24.34$
22	154.81 ± 25.05	>500	>500	>500	$335.36 \ \pm \ 26.38$
23	112.91 ± 10.99	$456.40 \ \pm \ 26.10$	$389.57\ \pm\ 23.41$	>500	$358.30\ \pm\ 27.60$
Cisplatin	9.86 ± 0.13	$19.32~\pm~2.43$	$6.24~\pm~1.54$	$10.20~\pm~0.69$	$11.34~\pm~2.25$

Figure S4. The HR-ESI-MS Spectrum of Compound 1

Figure S5. The IR Spectrum of Compound 1

Figure S6. The UV Spectrum of Compound 1

Figure S7. The ¹H NMR Spectrum of Compound 1 in CD3OD

Figure S8. The ¹³C NMR Spectrum of Compound 1 in CD3OD

Figure S9. The DEPT Spectrum of Compound 1 in CD3OD

Figure S10. The HSQC Spectrum of Compound 1 in CD3OD

Figure S11. The ¹H-¹H COSY Spectrum of Compound 1 in CD3OD

Figure S13. The NOESY Spectrum of Compound 1 in CD3OD

Figure S15. The ¹³C NMR Spectrum of Compound 2 in CD3OD

Figure S17. The ¹³C NMR Spectrum of Compound 3 in CD3OD

Figure S19. The ¹³C NMR Spectrum of Compound 4 in CD3OD

Figure S21. The ¹³C NMR Spectrum of Compound 5 in CDCCI3

Figure S22. The ¹H NMR Spectrum of Compound 6 in CD3OD

Figure S23. The ¹³C NMR Spectrum of Compound 6 in CD3OD

Figure S24. The ¹H NMR Spectrum of Compound 7 in CD3OD

Figure S25. The ¹³C NMR Spectrum of Compound 7 in CD3OD

Figure S27. The ¹³C NMR Spectrum of Compound 8 in CD3OD

Figure S29. The ¹³C NMR Spectrum of Compound 9 in CDCl3

Figure S30. The ¹H NMR Spectrum of Compound 10 in CD3OD

Figure S31. The ¹³C NMR Spectrum of Compound 10 in CD3OD

Figure S32. The ¹H NMR Spectrum of Compound 11 in CDCl3

Figure S33. The ¹³C NMR Spectrum of Compound 11 in CDCl3

Figure S35. The ¹³C NMR Spectrum of Compound 12 in CD3OD

 $\begin{array}{c} 7.260\\ 5.785\\ 5.785\\ 5.785\\ 5.785\\ 2.5610\\ 2.5610\\ 2.2603\\ 2.2603\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2575\\ 2.2557\\ 2.25$

Figure S37. The ¹³C NMR Spectrum of Compound 13 in CDCl3

Figure S38. The ¹H NMR Spectrum of Compound 14 in CD3OD

Figure S39. The ¹³C NMR Spectrum of Compound 14 in CD3OD

Figure S41. The ¹³C NMR Spectrum of Compound 15 in CD3OD

Figure S42. The ¹H NMR Spectrum of Compound 16 in CD3OD

Figure S43. The ¹³C NMR Spectrum of Compound 16 in CD3OD

Figure S45. The ¹³C NMR Spectrum of Compound 17 in CD3OD

Figure S47. The ¹³C NMR Spectrum of Compound 18 in CD3OD

Figure S48. The HR-ESI-MS Spectrum of Compound 19

Figure S49. The IR Spectrum of Compound 19

Figure S50. The UV Spectrum of Compound 19

Figure S51. The ¹H NMR Spectrum of Compound 19 in CD3OD

Figure S52. The ¹³C NMR Spectrum of Compound 19 in CD3OD

Figure S53. The DEPT Spectrum of Compound 19 in CD3OD

Figure S54. The HSQC Spectrum of Compound 19 in CD3OD

Figure S55. The ¹H-¹H COSY Spectrum of Compound 19 in CD3OD

Figure S56. The HMBC Spectrum of Compound 19 in CD3OD

Figure S57. The NOESY Spectrum of Compound 19 in CD3OD

Figure S58. The HR-ESI-MS Spectrum of Compound 20

Figure S59. The IR Spectrum of Compound 20

Figure S60. The UV Spectrum of Compound 20

Figure S62. The ¹³C NMR Spectrum of Compound 20 in CD3OD

Figure S63. The DEPT Spectrum of Compound 20 in CD3OD

Figure S65. The ¹H-¹H COSY Spectrum of Compound 20 in CD3OD

Figure S66. The HMBC Spectrum of Compound 20 in CD3OD

Figure S67. The NOESY Spectrum of Compound 20 in CD3OD

Figure S68. The ¹H NMR Spectrum of Compound 21 in CD3OD

Figure S69. The ¹³C NMR Spectrum of Compound 21 in CD3OD

Figure S71. The ¹³C NMR Spectrum of Compound 22 in CDCl3

Figure S73. The ¹³C NMR Spectrum of Compound 23 in CDCl3