Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary data

Different pretreatment methods combined with subsequent activation to convert waste eucalyptus bark into porous carbon electrode materials for supercapacitors

Kui Li^{a, b}, Zheng Liu^{*, a, b}, Xiangmeng Ma^{a, b}, Qingge Feng^{a, b}, Dongbo Wang^{a, b}, Dachao Ma^{a, b}

^a School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China.

^b Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning 530004, China.

* Corresponding author.

E-mail addresses: zhengl99@gxu.edu.cn (Zheng Liu).

Electrochemical measurement methods

The electrochemical performance of electrode was firstly investigated in a three-electrode system using 6M KOH as the electrolyte. BPC, acetylene black and polytetrafluoroethylene binder were mixed together to give a weight ratio of 80:15:5 in ethanol, and formed slurry that was pressed onto a nickel foam current collector $(1 \times 1 \text{ cm}^2)$ to afford working electrodes. The working electrodes were pressed under 10 MPa for 10 s and then dried under vacuum at 60 °C for 12 h for later tests, the mass loading of the active materials (including BPC, acetylene black and PTFE) in each working electrode determined as ~ 3.0 mg cm⁻². A platinum foil electrode $(1 \times 2 \text{ cm}^2)$ and an Hg/HgO electrode were used as the counter electrode and reference electrode in a standard three-electrode setup, respectively. Cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) in a frequency range of 100 kHz to 10 mHz at the open circuit potential with 5 mV amplitude were used to study the capacitive performance of the samples. In a three-electrode system, the specific capacitances were calculated from the charge-discharge curves according to the following equation:

$$C = \frac{I\Delta t}{m\Delta V} \tag{S1}$$

Where C ($F g^{-1}$) is the specific capacitance; I (A) is the discharge current; Δt (s) is the discharge time; m (mg) is the mass of the active materials; ΔV (V) is the potential window.

The symmetric aqueous supercapacitors in 6 M KOH and 1 M Na₂SO₄ aqueous solution were

assembled in a 2032 stainless steel coin cell using non-woven fabric to separate the two working electrodes with the same size and active material loadings of ~3.0 mg cm⁻² on each working electrode. The symmetric solid-state supercapacitor was built face-to-face by using two same PBPC-600 electrodes, which were immersed into carboxymethylcellulose sodium/sodium sulfate (CMC-Na/Na₂SO₄) gel electrolyte with a non-woven fabric separator. The CMC-Na/Na₂SO₄ gel here was prepared as follows: 3 g CMC-Na powder (viscosity: 1200 mPa s) was dissolved into 50 mL 6 mol L⁻¹ Na₂SO₄ solution under stirring at 70 °C until a transparent gel obtained. CV, GCD, EIS in a frequency range of 100 kHz to 10 mHz at the open circuit potential with 5 mV amplitude and 10000 charge-discharge cycles were studied to evaluate the performance of symmetric supercapacitors. For the symmetric supercapacitors, the specific capacitances, specific energy density and specific power density were calculated from the charge-discharge curves according to the following equation:

$$C = \frac{4I\Delta t}{m\Delta V}$$
(S2)
$$E = \frac{1}{2} \times \frac{1}{4} \times C\Delta V^{2}$$
(S3)
$$P = \frac{3600E}{\Delta t}$$
(S4)

Where C ($F g^{-1}$) is the specific capacitance; I (A) is the discharge current; Δt (s) is the discharge time; m (mg) is the mass of the active materials; ΔV (V) is the potential window. E (Wh kg⁻¹) is the average energy density; P ($W kg^{-1}$) is the average power density.

Figures and tables

Fig. S1 SEM images of waste eucalyptus bark.

Fig. S2 CV curves of BPCs in a three-electrode system using 6 M KOH as the electrolyte.

Fig. S3 GCD curves of BPCs in a three-electrode system using 6 M KOH as the electrolyte.

Fig. S4 Supercapacitance performance in a two-electrode system using 6M KOH as electrolyte: CV curves at a scan rate of 10 mV s⁻¹ under different operating voltage of (a) RBPC-600, (b) HBPC-600 and (c) PBPC-600; CV curves at different scan rate of (d) RBPC-600, (e) HBPC-600 and (f) PBPC-600; GCD curves under different current density of (g) RBPC-600, (h) HBPC-600 and (i) PBPC-600.

materials.				
Materials	Electrolyte/ 3E	Specific capacitance (F g ⁻¹)	Reference	
Hierarchical porous active carbon from fallen leaves	6M KOH	310.0 (0.5 A g ⁻¹)	1	
Activated biomass carbon made from bamboo	3M KOH	$293.0~(0.5~A~g^{-1})$	2	
Tea-leaves based nitrogen-doped porous carbon	2M KOH	296.0 (0.5 A g ⁻¹)	3	
graphene-like activated carbon derived from rice straw	ЗМ КОН	255.0 (0.5 A g ⁻¹)	4	
Rose-derived 3D carbon nanosheets	6M KOH	$208.0 (0.5 \text{ A g}^{-1})$	5	
Porous carbon derived from lotus seedpod shell	ЗМ КОН	165.0 (0.5 A g ⁻¹)	6	
Superhydrophilic carbon derived from sweet potato leaves	6M KOH	296.0 (0.5 A g ⁻¹)	7	

Table S1 Comparison of the specific capacitance of PBPC-600 electrode with some reported carbon

Porous carbon derived from sorghum stalk	6M KOH	216.5 (0.5 A g ⁻¹)	8
Crosscutting bamboo-derived porous carbon	6M KOH	$280.0 (0.5 \text{ A g}^{-1})$	9
Porous carbon derived from ginkgo leaves	6M KOH	$323.2 (0.5 \text{ A g}^{-1})$	10
Biomass porous carbon derived from waste eucalyptus bark (PBPC-600)	6M KOH	$349.4 (0.5 \text{ A g}^{-1})$	This work

 Table S2 Comparison of the energy density of the PBPC-600 based symmetric quasi-solid-state

 supercapacitor with recently published carbon-based aqueous symmetric supercapacitors.

Electrode materials	Electrolyte	Max energy density (Wh kg ⁻¹)	Reference
Activated carbon synthesized from oil palm kernel shell	1 M Na ₂ SO ₄	7.4 (300.0 W kg ⁻¹)	11
Porous carbon derived from sorghum stalk	$0.5 \text{ M} \text{ Na}_2 \text{SO}_4$	9.8 (225.4 W kg ⁻¹)	8
Peanut shells-derived 3D porous carbon	PVA/Li ₂ SO ₄	9.0 (380.0 W kg ⁻¹)	12
High graphitic biomass porous carbon	1 M Na ₂ SO ₄	14.2 (218.8 W kg ⁻¹)	13
Monolithic carbon sponge	PVA/ KOH	5.6 (250.0 W kg ⁻¹)	14
Graphitic hierarchical porous carbon nanosheets	1 M Na ₂ SO ₄	11.7 (80.0 W kg ⁻¹)	15
Honeycomb-like biomass carbon material	1 M Na ₂ SO ₄	11.1 (20.0 W kg ⁻¹)	16
Tobacco-stem-derived porous carbon	$1 \text{ M Na}_2 \text{SO}_4$	7.8 (444.0 W kg ⁻¹)	17
O, N-doped porous carbon derived from bamboo shoots shells	1 M Na ₂ SO ₄	13.2 (546.6 W kg ⁻¹)	18
Biomass porous carbon derived from waste eucalyptus bark (PBPC-600)	CMC-Na/Na ₂ SO ₄ gel	15.0 (160.0 W kg ⁻¹)	This work

References

- 1 Y.-T. Li, Y.-T. Pi, L.-M. Lu, S.-H. Xu and T.-Z. Ren, J. Power Sources, 2015, 299, 519-528.
- 2 G. Zhang, Y. Chen, Y. Chen and H. Guo, *Mater. Res. Bull.*, 2018, **102**, 391-398.
- 3 G. Ma, J. Li, K. Sun, H. Peng, E. Feng and Z. Lei, J. Solid State Electr., 2016, 21, 525-535.
- 4 K. M. Horax, S. Bao, M. Wang and Y. Li, *Chinese Chem. Lett.*, 2017, 28, 2290-2294.
- 5 C. Zhao, Y. Huang, C. Zhao, X. Shao and Z. Zhu, *Electroch. Acta*, 2018, **291**, 287-296.
- 6 J. Pu, W. Kong, C. Lu and Z. Wang, *Ionics*, 2014, **21**, 809-816.
- 7 R. Fu, C. Yu, S. Li, J. Yu, Z. Wang, W. Guo, Y. Xie, L. Yang, K. Liu, W. Ren and J. Qiu, *Green Chem.*, 2021, 23, 3400-3409.
- 8 G. Ma, F. Hua, K. Sun, Z. Zhang, E. Feng, H. Peng and Z. Lei, *RSC Adv*, 2016, **6**, 103508-103516.
- 9 J. Han, Y. Ping, S. Yang, Y. Zhang, L. Qian, J. Li, L. Liu, B. Xiong, P. Fang and C. He, *Diam. Relat. Mater.*, 2020, **109**, 108044.
- Y. Wang, C. Shao, S. Qiu, Y. Zhu, M. Qin, Y. Meng, Y. Wang, H. Chu, Y. Zou, C. Xiang, J.-L. Zeng, Z. Cao, F. Xu and L. Sun, *Diam. Relat. Mater.*, 2019, **98**, 107475.
- 11 I. I. Misnon, N. K. M. Zain and R. Jose, *Waste Biomass Valori.*, 2018, 10, 1731-1740.
- 12 P. A. Le, V. Q. Le, N. T. Nguyen and T. V. B. Phung, Appl. Nanosci., 2022.

- 13 Y. Tan, Z. Xu, L. He and H. Li, *J. Energy Storage*, 2022, **52**, 104889.
- 14 X. Jing, L. Wang, K. Qu, R. Li, W. Kang, H. Li and S. Xiong, *ACS Appl. Energ. Mater.*, 2021, **4**, 6768-6776.
- 15 P. Li, H. Xie, Y. Liu, J. Wang, Y. Xie, W. Hu, T. Xie, Y. Wang and Y. Zhang, *J. Power Sources*, 2019, **439**, 227096.
- 16 K. Zhao, L. Zhao, W. Zhou, L. Rao, S. Wen, Y. Xiao, B. Cheng and S. Lei, *J. Energy Storage*, 2022, **52**, 104910.
- 17 H. Wang, L. Yang, G. Liu and M. Li, *ChemistrySelect*, 2021, **6**, 532-537.
- 18 J. Han, Q. Li, J. Wang, J. Ye, G. Fu, L. Zhai and Y. Zhu, *J. Mater. Sci.: Mater. El.*, 2018, **29**, 20991-21001.