Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023 ## **Supporting information** ## Humidity-Tolerant NO₂ Sensor Based on Ag₃PO₄-SnSe₂ ## Heterostructures Juanyuan Hao^{a*}, Wen Lu^a, Dongmin Yin^a, Weixun Hao^b, You Wang^{a*} ^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China. E-mail: jyhao@hit.edu.cn and y-wang@hit.edu.cn. ^b State Key Laboratory of Efficient and Clean Coal-fired Utility Boilers, Harbin Boiler Company Limited, Harbin 150046, P. R. China. Fig. S1. Schematic diagram of the sensor measurement. Fig. S2. SEM image of pristine $SnSe_2$ nanosheets. Fig. S3. The full XPS survey spectra of pure $SnSe_2$ and $2.5\%Ag_3PO_4-SnSe_2$. Fig. S4. Resistances of the films of pure SnSe₂ and Ag₃PO₄-SnSe₂ heterostructures. Fig. S5. Long-term stability test toward 5 ppm NO₂ for 1 month. Fig. S6. The sensing response curve of the 2.5% Ag₃PO₄-SnSe₂ sensor towards 5 ppm NO₂ with air and N₂ as the background gases.