Electronic Supplementary Information on the New Journal of Chemistry Publication Entitled

Chiral Covalent Triazine Framework CC-DMP CCTF@SiO₂ Core-Shell Microspheres Used for HPLC Enantioseparation

Yu-Lan Zhu, Ping Guo, Yu-Ping Yang, Xiao-Yan Ran, Cheng Liu, Bang-Jin Wang, Jun-Hui Zhang*, Sheng-Ming Xie*, Li-Ming Yuan Department of Chemistry, Yunnan Normal University, Kunming 650500, P.R. China Corresponding authors: Jun-Hui Zhang, Sheng-Ming Xie E-mail: zjh19861202@126.com (J.H. Zhang); xieshengming_2006@163.com (S.M. Xie)

1 Chemicals

(2S,5S)-2,5-dimethylpiperazine (DMP, 98%) was acquired from Wuxi LabNetwork (Wuhan) Chemical Technology (Hubei, China). Cyanuric chloride (CC, 98%) was acquired from Shanghai Adamas-beta Reagent (Shanghai, China). 1, 4-Dioxane (99%) was acquired from Shanghai Aladdin Biochemical Technology (Shanghai, China). Bare silica microspheres (UniSil 5-120, particle size: 5µm, pore size: 120 Å) were acquired from Nano-micro Technology (Suzhou, China). Hydrochloric acid and acetone were acquired from Yunnan Yanglin Industrial Development Zone Shandian Pharmaceutical (Yunnan, China). Anhydrous ethanol, isopropanol, and n-hexane were acquired from Guangdong Guanghua Technology (Guangdong, China). Anhydrous K₂CO₃ (99%) was purchased from Tianjin Shengao Chemical Reagent (Tianjin, China). The chiral compounds utilized to estimate the chromatographic column's separation performance were obtained from Sigma-Aldrich (Missouri, USA), Adamas-beta (Shanghai, China), and TCI (Tokyo, Japan).

2 Instrumentations

A high-pressure column packing system (Shenzhen Zhengda Fluid Mechanical and Electrical Equipment, China) was utilized to prepare the CC-DMP CCTF@SiO₂ packed column. ELGA LabWater water purification equipment (London, UK) was utilized to create deionized water. The chromatographic separation of chiral compounds was performed on a 230 II high performance liquid chromatograph installed with an EC 2006 chromatographic workstation (Dalian Yilite Analytical Instrument, China). D/Max-3B powder X-ray diffraction (PXRD, Rigaku, Japan), S-3000N scanning electron microscope (SEM, Hitachi Science Systems, Japan), Fourier transform infrared spectroscopy (FTIR, WI, USA), and focused ion beam scanning electron microscopy (FIB-SEM, Helios G5) were utilized to characterize the prepared materials. The surface area and pore size of SiO₂ and CC-DMP CCTF@SiO₂ were examined by nitrogen adsorption-desorption isotherms at 77 K using the Micromeritics ASAP 2460 (BET, USA) instrument. The particle size distribution of CC-DMP CCTF@SiO₂ was obtained on the laser particle analyzer (Malvern Mastersizer 2000, UK). The Chiralpak AD-H column (25 cm length \times 4.6 mm i.d.) was obtained from Daicel Chiral Technologies (Shanghai, China). The stainless steel empty liquid chromatographic column (25 cm length \times 2.1 mm i.d.) was obtained from Dalian Ripley Technology Instruments (Dalian, China).

3 Calculation of the thermodynamic parameters

The retention factors (*k'*), separation factors (α), and resolution values (R_S) were calculated from Eqs. (1), (2) and (3), respectively.

$$k' = \frac{t_R - t_0}{t_0}$$
(1)
$$t_2 - t_0$$

$$\alpha = \frac{1}{t_1 - t_0} \tag{2}$$

$$R_{S} = \frac{t_{2} - t_{1}}{w_{1/2(1)} + w_{1/2(2)}}$$
(3)

where t_0 is the column void time which was determined by 1,3,5-tri-tert-butylbenzene, t_1 is the retention time for the faster moving analytes and t_2 for the slower, meanwhile $W_{1/2(1)}$ and $W_{1/2(2)}$ is the corresponding peak width at half height.

The temperature dependence of the retention factor k' can be described by the van' t Hoff equation [Eq. (4)], and the Gibbs free energy change(ΔG) was calculated using Eq. (5).

$$\ln k' = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} + \ln \Phi$$

$$\Delta G = \Delta H - T \Delta S$$
(4)
(5)

Here ΔH is the enthalpy change and ΔS is the entropy change for the transfer of solutes from the mobile phase to the stationary phase, R is the gas constant, T is the absolute temperature, and Φ represents the column phase ratio which was calculated according to Eq. (6):

$$\Phi = \frac{V_S}{V_0} \tag{6}$$

in which the volume of the stationary phase in the column (V_s) was obtained from Eq.(7) and the void volume of the column (V₀) was evaluated based on Eq. (8):

$$V_{S} = V_{col} - V_{0}$$

$$V_{0} = t_{0} \times t_{F}$$
(7)
(8)

 V_{col} in Eq. (7) is the geometric volume of the column and F in Eq.(8) is the flow rate of the mobile phase.

Fig S1 FIB-SEM image of the CC-DMP CCTF@SiO2

Fig. S2 Size distribution of the CC-DMP CCTF@SiO₂

4-methylbenzhydrol

ethyl mandelate

clenbuterol hydrochloride

naringenin OH

0

2,3-dihydro-1H-inden-1-ol

1-phenyl-1,2-ethanediol

1-(4-methoxyphenyl) ethanol

2-chloro-2-phenylacetophenone 2,2'-f

0

CI

1-phenyl ethanol

1-phenylethylamine

1,2-bis(4-fluorophenyl)-2-hydroxyethanone

mandelic acid methyl ester

1-(4-methylphenyl) ethanol 3-benzyloxy-1,2-propanediol

2,2,2-trifluoro-1-(9-anthryl)ethanol

Fig. S3 Structures of the chiral compounds separated on the CC-DMP CCTF@SiO₂ packed column.

Table S1 HPLC chromatograms for the separation of 16 chiral compounds on the CC-DMP CCTF@SiO₂ and Chiralpak AD-H columns (separation conditions as shown in Table 1).

