Supporting information for

Copper molybdenum sulfide (Cu$_2$MoS$_4$) nanoplates as a proficient
electrocatalytic interface for enhancing electrochemical redox signals of
Ofloxacin detection in pharmaceutical samples

Thi Lan Huong Phung$^{a,b}$, Ngoc Phan Vu$^{a,c}$, Tuan Anh Nguyen$^a$, Ngoc Huyen Nguyen$^a$, Xuan
Dinh Ngo$^a$,*, Van Hoi Bui$^d$, Ly T. Le$^d$ and Anh D. Nguyen$^d$,**, Anh-Tuan Le$^{a,e}$

$^a$Phenikaa University Nano Institute (PHENA), Phenikaa University, Hanoi 12116, Vietnam
$^b$Graduate University of Science and Technology, Vietnam Academy of Science and
Technology, 18 Hoang Quoc Viet, Ha Noi 12116, Vietnam
$^c$Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University,
Ha Noi 12116, Vietnam
$^d$University of Science and Technology of Hanoi, Vietnam Academy of Science and
Technology, 18 Hoang Quoc Viet, Hanoi 12116, Vietnam.
$^e$Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam

Corresponding authors:

* dinh.ngoxuan@phenikaa-uni.edu.vn (N.X. Dinh)

** nguyen-duc.anh@usth.edu.vn (Duc Anh Nguyen)
Fig. S1. SEM images of screen-printed electrodes before and after CMS modification.

Fig. S2. CV curves recorded of un-modified and CMS-modified electrodes with various scan rates from 10 to 60 mV s\(^{-1}\) (a, d) and the corresponding calibration plots of peak current response vs. square root of scan rate (b-c, e-f).

Fig. S3. Fitted and experimental Nyquist plots of impedance spectra. The red line is calculated results from model fitting, and the black line is experimental data. The inset shows the Randles equivalent circuit used for fitting the data.
**Fig. S4.** Effect of accumulation time on OFX electrochemical oxidation of CMS/SPE.

**Fig. S5.** DPV curves of CMS/SPE in 50 μM OFX at various pH values (a), corresponding to the plots of peak current and peak potential vs. pH value (b, c) with error bars.
Fig. S6 Effect of modifier amount on OFX electrochemical oxidation of CMS/SPE.

Fig. S7 Effect of scan rate on OFX electrochemical oxidation of CMS/SPE.
Fig. S8. Effect of pulse potential on OFX electrochemical oxidation of CMS/SPE.

Fig. S9. Stability and repeatability of CMS-modified electrode.
**Fig. S10.** Interference investigation of the CMS-modified electrodes with the 4-fold concentration of interference substances.

**Fig. S11.** Long-term stability of CMS-modified electrodes.
<table>
<thead>
<tr>
<th>Detection method</th>
<th>Analytical ranges (µM)</th>
<th>LOD (nM)</th>
<th>Real samples</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoelectrochemical</td>
<td>1– 100</td>
<td>906</td>
<td>-</td>
<td>[1]</td>
</tr>
<tr>
<td>Capillary electrophoresis</td>
<td>1.4– 28</td>
<td>102</td>
<td>Tissue</td>
<td>[2]</td>
</tr>
<tr>
<td>Spectrofluorimetric</td>
<td>0.075 – 3.75</td>
<td>50</td>
<td>Milk</td>
<td>[3]</td>
</tr>
<tr>
<td>Solid-phase spectrofluorimetric</td>
<td>0.140 – 1.269</td>
<td>33.6</td>
<td>Plasma</td>
<td>[4]</td>
</tr>
<tr>
<td>HPLC with fluorescence detection</td>
<td>0.028 – 280</td>
<td>28</td>
<td>Aqueous vitreous</td>
<td>[5]</td>
</tr>
</tbody>
</table>
References


