Ni modified CuS-based self-supported electrocatalyst with nanobeads-like porous morphology for efficient hydrogen production in basic media.

Vishal V. Burungale¹, Hyojung Bae², Pratik Mane¹, An-Na Cha³, Sang-Wan Ryu², Soon-Hyung Kang², Jun-Seok Ha^{1,2,3*}

Figure S1 The photographs of the actual experimental setup, the graph of Current vs Time during electrodeposition, and details of catalyst loading of the CFP_C sample.

Figure S2 The photographs of actual samples used for electrochemical study and tables containing details of measured sample areas.

Figure S3 The XRD patterns of CFP_C, CFP_CCS, and CFP_CSN samples with their respective standard XRD patterns.

Figure S4 XPS Survey spectra of CFP_C, CFP_CCS, and CFP_CSN samples.

Figure S5 Narrow scan XPS spectra of (a) Cu, (b) O, for CFP C sample

Figure S6 Narrow scan XPS spectra of (a) Cu, (b) O, (c) S for CFP_CCS sample

Figure S7 The images related to measurement of interplanar distance using Gatan Software

Figure S8 (a) XRD patterns of CFP_CSN sample before and after stability, (b) Enlarged version of after stability XRD pattern to show small peaks related to CuS.

Figure S9 The comparative XPS narrow scan spectrums of (a) Cu, (b) O, (c) S, and (d) Ni before and after the stability experiment.

Figure S10 (a) Cyclic Voltammetry curves measured in a non-Faradaic region of CFP samples at different scan rates and (b) Corresponding Linear regression between current density differences in the middle of the potential window of CV vs. Scan Rates.

	Area of Substrate (cm ²)	Calculated mass of substrate (g)	Before Sulfurization (g)	After Sulfurization (g)	Weight difference (g)	Actual mass of catalyst (g)	Area of deposition (cm²)	Catalyst loading (g/cm²)
Without Ni	1.462	0.0205	0.0316	0.0297	-0.0019	0.0092	0.876	0.010502
With Ni	1.491	0.0209	0.0331	0.0306	-0.0025	0.0097	0.866	0.011201

Table S1 The details of catalyst loading of sulfurized samples measured by the weight difference method.

 Table S2. EIS equivalent circuit fitting data

	R_u (Ω.cm ²)	Y ₀	n	R_{cT} (Ω. cm ²)
CFP	1.426	0.00026	0.8589	282.90
CFP_C	1.202	0.02796	0.8273	6.12
CFP_CCS	1.162	0.05352	0.8603	2.60
CFP_CSN	1.021	0.06764	0.8346	0.76

Table S3. Comparison of HER activity with some of the previously reported Cu based electrocatalysts.

Catalyst	Substrate	Tafel Slope (mV/dec)	Electrolyte	Current density (mA/cm ²)	Overpotential (mV)	Reference	
		Alk	aline electrolyte				
				10	216		
Cu ₂ O/CuS/Ni	CFP	91.54	1.0 M KOH	50	285	This work	
				100	325		
CuS	GCE	244	1.0 M KOH	10	447	1	
Cu ₂ O/CuS	GCE	212	1.0 M KOH	10	240	1	
Cu ₂ O-200	GCE	106	1.0 M KOH	10	184	2	
CuFe _{0.6} S _{1.6}	CFP	101	1.0 M KOH	10	237	3	
CuO@UiO-66	NF	164	2.0 M KOH	10	220	4	
Cu/Cu-MOF/GO	CF	201	1.0 M KOH	10	250	5	
Ni ₉ S ₈ /CuS/Cu ₂ O/NF	NF	163	1.0 M KOH (0.33 M Urea)	10	146	6	
Neutral Electrolyte							
Υ-Cu ₂ S	CF	98.9	1 M KPi	10	190	7	
Acidic Electrolyte							
Cu-C ₃ N4	GCE	~76	0.5M H ₂ SO ₄	10	390	8	
CuS	GCE	171	0.5M H ₂ SO ₄	10	449	9	

CuS-Au	GCE	75	0.5M H ₂ SO ₄	10	179	9
Ag ₂ S/CuS	GCE	75	0.5M H ₂ SO ₄	10	193	10
CuS/MoS ₂	GCE	80	0.5M H ₂ SO ₄	10	225	11
0.1rGO-CuS	GCE	61	0.5M H ₂ SO ₄	10	179	12
MoS ₂ /CuS	GCE	63	0.5M H ₂ SO ₄	10	290	13
CuS	CFP	144	0.5M H ₂ SO ₄	10	449	14
CuO-NiO/CN	GP	171	0.5M H ₂ SO ₄	10	762	15

References:

- S.-Q. Liu, H.-R. Wen, G. Ying, Y.-W. Zhu, X.-Z. Fu, R. Sun and C.-P. Wong, *Nano Energy*, 2018, 44, 7-14.
- 2. M. Wang, X. Cheng and Y. Ni, *Dalton Trans*, 2019, **48**, 823-832.
- X. Li, N. Ye, H. Liu, C. Li, Y. Huang, X. Zhu, H. Feng, J. Lin, L. Huang, J. Wu, Y. Liu, C. Liang and X. Peng, *International Journal of Hydrogen Energy*, 2022, **47**, 16719-16728.
- 4. M. Fiaz, M. Athar, S. Rani, M. Najam-ul-Haq and M. A. Farid, *Materials Chemistry and Physics*, 2020, **239**.
- 5. L. Ye and Z. Wen, *Chem Commun (Camb)*, 2018, **54**, 6388-6391.
- 6. D. Wei, W. Tang and Y. Wang, *International Journal of Hydrogen Energy*, 2021, **46**, 20950-20960.
- 7. M. Fan, R. Gao, Y.-C. Zou, D. Wang, N. Bai, G.-D. Li and X. Zou, *Electrochimica Acta*, 2016, **215**, 366-373.
- 8. X. Zou, R. Silva, A. Goswami and T. Asefa, *Applied Surface Science*, 2015, **357**, 221-228.
- 9. M. Basu, R. Nazir, P. Fageria and S. Pande, *Sci Rep*, 2016, **6**, 34738.
- 10. H. Ren, W. Xu, S. Zhu, Z. Cui, X. Yang and A. Inoue, *Electrochimica Acta*, 2016, **190**, 221-228.
- 11. A. Bar-Hen, R. Bar-Ziv, T. Ohaion-Raz, A. Mizrahi, S. Hettler, R. Arenal and M. Bar Sadan, *Chemical Engineering Journal*, 2021, **420**.
- 12. H. Wang, L. Hu, H. Zhou and Y. Zhang, *International Journal of Hydrogen Energy*, 2021, **46**, 35239-35247.
- 13. L. Zhang, Y. Guo, A. Iqbal, B. Li, D. Gong, W. Liu, K. Iqbal, W. Liu and W. Qin, *International Journal of Hydrogen Energy*, 2018, **43**, 1251-1260.
- 14. L. An, L. Huang, P. Zhou, J. Yin, H. Liu and P. Xi, *Advanced Functional Materials*, 2015, **25**, 6814-6822.
- 15. S. B. Khan and A. M. Asiri, *Journal of Molecular Liquids*, 2021, **335**.