Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

> Ratiometric fluorescence detection of doxorubicin by R-CQDs Based on Inner Filter Effect and Fluorescence Resonance Energy Transfer

Supporting Information

Ratiometric fluorescence detection of doxorubicin by R-CQDs Based on Inner Filter Effect and Fluorescence Resonance Energy Transfer

Zhiwen Li^{1,2}, Zhilin Zhou^{1,2}, Jianghua Wang^{1,2}, Qiyao Sun^{1,2}, Jiyue Zhang^{1,2}, Tingxian Tao^{1,2} and Yingqiang Fu^{1,2,a,*}
¹School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China
²Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Wuhu, Anhui 241000, P. R. China

^aEmail: fyq@ahpu.edu.cn

Figure S 1. Absolute Quantum Yield Measurements of R-CQDs

Figure S 2. UV-vis absorption profiles of R-CQDs and DOX

Figure S 3. Emission spectra of CQDs at different excitation wavelengths