Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information.

Hydrosilylation and electroreduction of CO₂ using a Zirconocene Hydride Catalyst Diego A.Roa and Juventino J. García*

juvent@unam.mx

Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico

Content

Figure 1S. MS for Phenylsilane	S2
Figure 2S. MS for Methoxy(phenyl)silane	S2
Figure 3S. MS for dimethoxy(phenyl)silane	S3
Figure 4S. MS for trimethoxy(phenyl)silane	S3
Figure 5S. MS for Metyl-formate	S4
Figure 6S. MS for Methanol	S4
Figure 7S. MS for 1,3-diphenyldisiloxane	S5
Figure 8S. Typical GC for crude mixture for CO ₂ hydrosilylation reaction	S5
Table 1S. Promotors used in the hydrosilylation reaction	S6
Table 2S. Solvents used in the hydrosilylation reaction	S7
Table 3S. Hydrosilylation reaction at different pressures	S8
Quantification of methanol at the optimized reaction	S9
Hg drop test of the optimized reaction	S10
Reaction of CO ₂ with [Cp ₂ ZrHCl]	S11
Figure 9S ¹ H-NMR of the reaction of CO ₂ with [Cp ₂ ZrHCl]	S12
Figure 10S ¹³ C-NMR of the reaction of CO ₂ with [Cp ₂ ZrHCl]	S13
Figure 11S Cyclic voltammetry of [Cp ₂ ZrHCl] in argon	S14
Figure 12S Cyclic voltammetry of [Cp ₂ ZrHCl] with PhB(OH) ₂	S14
Figure 13S Cyclic voltammetry of [Cp ₂ ZrHCl] with H ₂ O	S15
Figure 14S Cyclic voltammetry of [Cp ₂ ZrHCl] with AcOH	S15
Figure 15S. FTIR resulting from the reaction of Wilkinson's reagent with the outle	t gas of
the chronoamperometry	S16
Calculation of Faradic Efficiency	S17
Figure 16S. GC for the reaction mixture of chronoamperometry with PhCO ₂ H	<u></u> S18
Figure 17S. MS for Formic Acid	S18
Figure 18S. Full spectrum of ¹ H-NMR of the reaction of CO ₂ with [Cp ₂ ZrHCl]	<u></u> S19
Figure 19S. Electrochemical control experiments in absence of [Cp ₂ ZrHCl]	S20

Abundance

Figure 2S. MS for Methoxy(phenyl)silane

Figure 3S. MS for dimethoxy(phenyl)silane

Figure 4S. MS for trimethoxy(phenyl)silane

Abundance

Scan 1553 (10.962 min): DR-ZC01.D(151.9)a.ms (-1564) (-)

Figure 7S. Typical GC for crude mixture for CO2 hydrosilylation reaction. 100 °C, 24 h in THF.

$$CO_2 + PhSiH_3 \xrightarrow{3 \text{ mol}\%[Cp_2ZrHCI]}_{THF, 120 °C, 48h} RSi \left(\begin{array}{c} H \\ I \\ O \end{array} \right)_n + \begin{array}{c} 0 \\ H \\ H \end{array} \right)_n + \begin{array}{c} 0 \\ H \\ H \\ O \end{array} \right)_n + CH_3OH$$

Entry	Promotor	%SiOMe	% FM	% MeOH	% Conv
1	KF	31	5	4	40
2	TBAF	nd	nd	nd	>99
3	$B(Et)_3$	68	8	2	80
4	H_2O	nd	traces	traces	<1

Table 1S. Promotors used for CO₂ hydrosilylation reaction^a

^a Reactions were performed using 0.012 mmol [Cp₂ZrHCl] with 0.401 mmol PhSiH₃ at 120 °C under 100 psi CO₂. Yields and conversion were determined by GC-MS

$$CO_2 + PhSiH_3 \xrightarrow{3 \text{ mol} \& [Cp_2 ZrHCI]}_{\text{Solvent, 120 °C, 72h}} RSi \left(\begin{array}{c} H \\ I \\ O \end{array} \right)_n + \begin{array}{c} 0 \\ H \\ H \end{array} \right)_n + \begin{array}{c} 0 \\ H \\ H \\ O \end{array} \right)_n + CH_3OH$$

Entry	Solvent	%SiOMe	% FM	% MeOH	% Conv
1	THF	92	5	3	>99
2	Dioxane	4	1	0	5
3	Toluene	nd	nd	nd	0
4	ACN	nd	nd	nd	>99

Table 2S. Solvents used for CO₂ hydrosilylation reaction^a

^a Reactions were performed using 0.012 mmol [Cp₂ZrHCl] with 0.401 mmol PhSiH₃ at 120 °C under 100 psi CO₂. Yields and conversion were determined by GC-MS

$$CO_2 + PhSiH_3 \xrightarrow{3 \text{ mol}\%[Cp_2ZrHCI]}_{THF, 120 °C, 48h} RSi \left(\begin{array}{c} H \\ 0 \end{array} \right)_n + \begin{array}{c} 0 \\ H \end{array} \right)_n + \begin{array}{c} 0 \\ H \end{array} \right)_n + CH_3OH$$

Table 38. Different pressures of CO_2 at the hydrosilylation reaction^a

Entry	CO ₂ (psi)	%SiOMe	% FM	% MeOH	% Conv
1	100	87	8	2	97
2	80	72	25	1	98
3	50	27	65	4	96

^a Reactions were performed using 0.012 mmol [Cp₂ZrHCl] with 0.401 mmol PhSiH₃ at 120 °C for 48 h. Yields and conversion were determined by GC-MS

Quantification of methanol at the optimized reaction

Addition	mmol MeOH	Area	
0	0	6417951	
20 uL	0.494	8621609	
60 uL	1.483	15539820	

Table 5S. Addition of MeOH to the crude reaction

The negative intercept on the x-axis corresponds to the amount of the analyte in the test sample. This value is given by b/a, the ratio of the intercept and the slope of the regression line.

Moles of MeOH in the crude reaction: 0.031mmol

 $\% Yield_{MeOH} = \frac{0.9662 \ mmol}{1.203 \ mmol \ H^{-}} \times 100 = 80.31\% \approx 80\%$

Hg drop test of the optimized reaction

$$CO_{2} + PhSiH_{3} \xrightarrow{3 \text{ mol} (Cp_{2}ZrHCI)}_{THF, 120 °C, 72h} RSi \left(\begin{array}{c} H \\ 0 \end{array} \right)_{n} + \begin{array}{c} 0 \\ H \end{array} \right)_{n} + \begin{array}{c} 0 \\ H \end{array} \right)_{n} + CH_{3}OH \\ H \end{array}$$

Reaction of CO₂ with [Cp₂ZrHCl]

CO_2	[Cp ₂ ZrHCl]	- MeOH
1 atm	1) THF, rt, 15h 2) 10% HCl	28 %

Table 5S. Addition of MeOH to the crude reaction

Addition	mmol MeOH	Area		
0	0	159584		
20 uL	0.494	695799		
60 uL	1.483	2538090		

Graphic 1S. Addition Standard (MeOH) to the crude reaction

The negative intercept on the x-axis corresponds to the amount of the analyte in the test sample. This value is given by b/a, the ratio of the intercept and the slope of the regression line.

Moles of MeOH in the crude reaction: 0.031mmol $\% Yield_{MeOH} = \frac{0.030mmol}{0.1146mmol} \times 100 = 26.18\% \approx 26\%$

Figure 9S. ¹H-NMR of the reaction of CO₂ with [Cp₂ZrHCl]

Figure 11S. Cyclic voltammetry of [Cp₂ZrHCl] in argon

Figure 128. Cyclic voltammetry of [Cp₂ZrHCl] with PhB(OH)₂

Figure 14S Cyclic voltammetry of [Cp₂ZrHCl] with AcOH

Figure 15S. FTIR resulting from the reaction of Wilkinson's reagent with the outlet gas of the chronoamperometry.

Calculation of Faradic Efficiency

An approximate calculation of the faradaic efficiency (FE) was made with the data obtained from chronoamperometry (equation 1).¹ The estimated proportion of Wilkinson's catalyst containing CO was 6.7%.

$$FE(\%) = \frac{(n_{pro} \times n_e^{CO} \times F)}{Q}$$
 Ec. 1

Where n_{pro} are the moles of product, n_e^{CO} is the number of electrons for CO, F is a constant (96485 C mol-1) and Q is the total charge that passes during electrolysis.

$$J(mA * cm^{-2}) = \frac{I}{A} = \frac{1}{2}$$

$$J = -2.13 mA * cm^{-2}$$

Where I = -0.064 mA, this was a value at the start of chronoamperometry, A = 0.03 cm² at - 2.8 V.

Being $FE_{CO} = 8.3\%$, with current density J = -2.13 mA cm₂ at -2.8 V. It is estimated that the calculated FE is below the real value of the process, due to the limitations of the CO

quantification method. Likewise, the amount of H_2 generated is currently unknown, so selectivity data is not included.

References

(1) N. Eliaz, E. Gileadi, Physical Electrochemistry – Fundamentals, Techniques, and Applications, 2nd Edition, Wiley-VCH, 2019

Figure 16S. GC for the reaction mixture of chronoamperometry with PhCO₂H

Figure 18S. Full spectrum of ¹H-NMR of the reaction of CO₂ with [Cp₂ZrHCl]

Figure 198. Electrochemical control experiments in absence of [Cp₂ZrHCl]

