Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Table S1. Summa	rv of data c	ollection and	structure	refinement.
	. y 01 aata 0	oneed on and	onaotaro	

Identification	[(MoO ₂) ₂ (BPA) ₂ (µ-O)]
Formula	$C_{26}H_{26}Mo_2N_4O_7$
Fw (g mol⁻¹)	698.39
Т (К)	291(2)
λ (Å)	0.71073
Crystal system	Monoclinic
Space group	P2 ₁ /n
a (Å)	11.7279(5)
b (Å)	15.2529(5)
<i>c</i> (Å)	14.7858(6)
α(°)	90
β(°)	90.9290(10)
χ(°)	90
Volume (ų)	2644.60(18)
Z	4
ρ _{calc} (Mg m ⁻³)	1.754
μ (mm ⁻¹)	1.001
F(000)	1400
θ range(°)	2.20-26.40
Index ranges	$-14 \le h \le 14$
	$-19 \le k \le 19$
	− 18 ≤ <i>I</i> ≤ 18
Data collected	47048
Independent reflections	5404
R _{int}	0.0273
Refinement method	Full matrix least squares on F ²
Data / restraints / parameters	5404/2/360
GOF on <i>F</i> ²	1.200
R1, wR2 [I>2σ(I)]	0.0289; 0.0681
R1, wR2 (all)	0.0339; 0.0729
$\Delta ho_{max}, \Delta ho_{min}$ (e·Å ⁻³)	0.729; -0.821

Internal standart: anthracene solution at concentration 2,5.10⁻³ mol L⁻¹ in acetonitrile.

Standard solutions: Substrates (dibenzothiophene, diphenylsulfide and thioanisole) at concentrations showed at Table S2 in acetonitrile.

The injections at GC-MS were performed with mixture of 50 μ L of each standart solution of DBT, DPS and THIO and 450 μ L of internal standard solution.

Table S2. Substrate concentrations of standart solutions from analytical curves for sulfide quantification.

	Substrate concentration	Substrate
	(mol. L ⁻¹)	(%)
1	7.00 10 ⁻²	100
2	5.25 10 ⁻²	75
3	3.50 10 ⁻²	50
4	1.75 10 ⁻²	25
5	7.00 10-4	1
6	7.00 10 ⁻⁵	0,1

Figure S1. Calibration curves for quantification of sulfide conversion.

Figure S2. View of crystal packing along *a* direction evidencing intramolecular and intermolecular hydrogen bonds (yellow dashed line). Carbon and hydrogen atoms were omitted for clarity.

	Hexagon	Pentagonal pyramid	Octahedron	Trigonal prism	Johnson pentagonal pyramid J2
Mo1	31.815	29.013	0.903	16.010	32.247
Mo2	31.792	27.246	1.019	15.051	30.624

Table S3. Continuous shape measure values for $[(MoO_2)_2(BPA)_2(\mu-O)]$.

Table S4. Comparison between calculated and crystal data bonding lengths of $[(MoO_2)_2(BPA)_2(\mu-O)]$ complex.

Bond	Calculated (Å)	Experimental (Å)	Difference (%)
Mo1-O1	1.92104	1.883(2)	2.02
Mo1-O2	1.97792	1.988(2)	-0.51
Mo1-O3	1.76865	1.720(2)	2.83
Mo1-O4	1.75754	1.700(2)	3.38
Mo1-N1	2.37838	2.335(2)	1.86
Mo1-N2	2.35036	2.356(2)	-0.24
Mo2-O1	1.93916	1.913(2)	1.37
Mo2-O5	1.98649	1.981(2)	0.28
Mo2-O6	1.75725	1.706(2)	3.00
Mo2-O7	1.75868	1.703(2)	3.27
Mo2-N3	2.35717	2.340(2)	0.73
Mo2-N4	2.36714	2.363(2)	0.18
O4-Mo1-O3	107.519	106.5(1)	0.96
O4-Mo1-O1	97.6476	99.94(9)	-2.29
O3-Mo1-O1	96.66481	98.18(8)	-1.54
O4-Mo1-O2	96.1737	95.33(9)	0.89
O3-Mo1-O2	98.88854	96.38(8)	2.60
O1-Mo1-O2	155.00681	154.92(8)	0.06
O4-Mo1-N1	89.91592	92.30(9)	-2.58
O3-Mo1-N1	162.42655	161.20(9)	0.76
O1-Mo1-N1	78.37178	78.59(8)	-0.28
O2-Mo1-N1	80.93174	81.05(7)	-0.15
O4-Mo1-N2	161.22231	162.79(9)	-0.96
O3-Mo1-N2	91.09937	90.01(9)	1.21
O1-Mo1-N2	82.18541	82.05(8)	0.17
O2-Mo1-N2	78.08493	77.63(7)	0.59
N1-Mo1-N2	71.59926	71.23(7)	0.52
Mo1-O1-Mo2	152.34313	157.8(1)	-3.46
07-Mo2-O6	108.25566	107.4(1)	0.80
O7-Mo2-O1	95.99379	98.53(9)	-2.57
O6-Mo2-O1	100.14182	100.44(9)	-0.30
07-Mo2-O5	93.12026	93.42(9)	-0.32
O6-Mo2-O5	96.48035	96.35(9)	0.14
O1-Mo2-O5	157.45752	155.38(8)	1.34
O7-Mo2-N3	94.2012	94.92(9)	-0.76
O6-Mo2-N3	157.01288	156.95(9)	0.04
O1-Mo2-N3	81.82891	81.39(8)	0.54
O5-Mo2-N3	76.96608	76.19(8)	1.02
07-Mo2-N4	165.26334	164.59(9)	0.41
O6-Mo2-N4	86.3215	87.49(9)	-1.34
01-Mo2-N4	83.16797	82.20(8)	1.18
O5-Mo2-N4	82.81413	80.68(8)	2.65
N3-Mo2-N4	71.09448	69.90(8)	1.71

Table S5. Calculated atomic Mulliken charges for $[(MoO_2)_2(BPA)_2(\mu-O)]$ complex.Atoms numbers correspond to the crystal structure data of Figure 2.

Atom	Mulliken Charges
Mo1	1.284
Mo2	1.242
O1	-0.766
O2	-0.563
O3	-0.567
O4	-0.500
O5	-0.548
O6	-0.522
07	-0.486
N1	-0.469
N2	-0.273
N3	-0.520
N4	-0.273

Table S6. FITR mainly wavenumber bands (cm⁻¹) in the vibration spectra of the HBPA ligand and $[(MoO_2)_2(BPA)_2(\mu-O)]$.

HBPA	Mo complex	Group vibration
-	3438	vO-H (water)
3263	3236, 3176	vN-H (primary amine)
3039	3073	vC-H (aromatic)
2931	2913	vC-H (aliphatic, symmetrical)
2859	-	vC-H (aliphatic, unsymmetrical)
		νC=C, νC=N
1593, 1456, 1429	1605, 1480, 1448	(double bonds in aromatics)
1356	-	δO-H (phenol)
-	1024	vN–Mo
-	907	vMo=O (dioxomolybdenum)
-	743, 759	v Мо-О-Мо
	471	vN-Mo

Figure S3. Electronic spectrum of Mo(VI) complex in DMSO solution of 2.86x10⁻⁴ mol/dm³.

Figure S4. Experimental ESI-(+)-MS for $[(MoO_2)_2(BPA)_2(\mu-O)]^+$ in methanol solution.

¹⁰⁰∃

Figure S5. Experimental (top) and calculated (bottom) isotopic pattern for [(MoO₂)₂(BPA)₂(µ-O)]⁺.

Figure S6. The linear dependence of I_{pa} vs. $v^{1/2}$ of anodic peak (E_{a1}) (top) and the linear relationship between the logarithm of I_{pa} and the logarithm of v (bottom).