Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Data

Figure S0. EDX spectrum of TiO₂-VO_x

Figure S1. Isoelectric point (pH_{pzc}) of TiO₂-VO_x/PANi-PPy composite

Table S1. Comparison of photocatalysts for PMS activation and RhB removal

Photocatalyst	Synthesis	Conditions	Remark	Reference
---------------	-----------	------------	--------	-----------

	method			
TiO ₂ -	Electrospinning,	Catalyst: 0.5 g/L; PMS:	97.03 % of RhB in	This
V ₂ O ₅ /PANi-	vapor-phase	0.65 mM; RhB: 20 mg/L;	120 min	work
РРу	polymerization	25 °C; pH 7; Light: LED	Key ROS: ¹ O ₂	
		L4X 40W		
CaFe ₂ O ₄	Sol-gel	Catalyst: 1 g/L; PMS: 0.65	99.2 % of RhB in 120	[1]
		mM; RhB: 10 mg/L; pH	min	
		4.8; 25 °C; Light: xenon	Key ROS: h^+ and $O_2^{\bullet-}$	
		500 W with a 420 nm cut-		
		off filter		
BiVO ₄	Hydrothermal	Catalyst: 0.5 g/L; PMS:	90.9% of RhB	[2]
		1.0 mM; RhB: 10 mg/L;	removal in 60 min	
		pH 3; 25 °C; Light: metal	Key ROS: SO₄•-,	
		halogen 400 W with a 415	HO•, and $O_2^{\bullet-}$.	
		nm cut-off filter		
cPVC/Bi ₂ O ₃	Solvothermal	Catalyst: 0.4 g/L; PMS:	98% of RhB in 40 min	[3]
		0.3 g/L; RhB: 10 mg/L; pH	Key ROS: $SO_4^{\bullet-}$ and	
		5.18; 23 °C; Light: Osram	НО∙	
		Ultra-Vitalux 300 W		
CoFe ₂ O ₄ @g-	Sol-gel, urea	Catalyst: 0.4 g/L; PMS:	96% of RhB in 30 min	[4]
C ₃ N ₄	thermal	0.09 g/L; RhB: 10 mg/L	Key ROS: SO₄•-,	
	porymerization	pH: 9; Light source:	HO•, and O_2^{\bullet}	
		Vonfram halogen 500 W		
α-S	Wet chemical	Catalyst: 0.5 g/L; PMS:	100% of RhB in 50	[5]
		0.4 g/L; RhB: 10 mg/L	min	
		pH 7; 40 °C; Light: 150 W	Key ROS: SO ₄ •- and	
		Philips	НО∙	
BiFeO ₃	Hydrothermal	Catalyst: 1 g/L; PMS: 5	63% of RhB in 40 min	[6]
microsphere		mM; RhB: 5 mg/L; 25 °C;	Key ROS: HO•, SO ₄ •-	
		Light: xenon 500 W with a	, and O_2^{\bullet}	
		420 nm cut-off filter		
1	1			

Figure S2. MS spectra of RhB solutions degraded by TiO₂-VO_x/PANi-PPy/PMS/Vis system.

Figure S3. PL spectra of TiO₂ (red), TiO₂-VO_x (blue), and TiO₂-VO_x-PANi-PPy (black).

References

- S. Guo, Z. Yang, H. Zhang, W. Yang, J. Li, K. Zhou, Enhanced photocatalytic degradation of organic contaminants over CaFe2O4 under visible LED light irradiation mediated by peroxymonosulfate, Journal of Materials Science & Technology, 62 (2021) 34-43.
- [2] Y. Liu, H. Guo, Y. Zhang, W. Tang, X. Cheng, H. Liu, Activation of peroxymonosulfate by BiVO 4 under visible light for degradation of Rhodamine B, Chemical Physics Letters, 653 (2016) 101-107.
- [3] H.-H. Pham, S.-J. You, Y.-F. Wang, M.T. Cao, V.-V. Pham, Activation of potassium peroxymonosulfate for rhodamine B photocatalytic degradation over visible-light-driven conjugated polyvinyl chloride/Bi2O3 hybrid structure, Sustainable Chemistry and Pharmacy, 19 (2021).
- [4] X. Guo, S. Ai, D. Yang, L. Zhao, H. Ding, Synergistic photocatalytic and Fenton-like degradation of organic contaminants using peroxymonosulfate activated by CoFe2O4@g-C3N4 composite, Environ Technol, 42 (2021) 2240-2253.
- [5] K.-Y. Andrew Lin, Z.-Y. Zhang, α-Sulfur as a metal-free catalyst to activate peroxymonosulfate under visible light irradiation for decolorization, RSC Advances, 6 (2016) 15027-15034.
- [6] F. Chi, B. Song, B. Yang, Y. Lv, S. Ran, Q. Huo, Activation of peroxymonosulfate by BiFeO3 microspheres under visible light irradiation for decomposition of organic pollutants, RSC Advances, 5 (2015) 67412-67417.