Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Synthesis, crystal structure, DFT, and photovoltaic studies of BaCeCuS₃

Omair Shahid^{*a*}, Sweta Yadav^{*a*}, Debanjan Maity^{*a*}, Melepurath Deepa^{*a*}, Manish K. Niranjan^{*b*}, and Jai Prakash^{*a*, *}

^aDepartment of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India

Electronic Supplementary Information (ESI)

^bDepartment of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India

Fig SI1: The 3D iso-surfaces of the electron localization function (ELF) for BaCeCuS₃ with (a) ELF = 0.80 and (b) ELF = 0.75. The yellow cloud indicates the density of transferred charge.

Table SI1 Atomic displacement parameters (Å²) for the BaCeCuS₃ structure.

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
BaCeCuS ₃						
Bal	0.02149(19)	0.01205(16)	0.01333(17)	0.000	-0.00111(13)	0.000
Cel	0.00723(14)	0.00772(14)	0.01306(15)	0.000	0.00010(10)	0.000
Cul	0.0126(3)	0.0215(4)	0.0157(4)	0.000	0.0008(3)	0.000
S1	0.0111(6)	0.0101(5)	0.0108(6)	0.000	0.0009(5)	0.000
S2	0.0084(5)	0.0096(5)	0.0115(6)	0.000	-0.0004(4)	0.000
S3	0.0133(6)	0.0108(5)	0.0110(6)	0.000	-0.0003(5)	0.000

S2 ⁱ —Ba1—S2 ⁱⁱ	81.54 (4)	S3 ^{viii} —Ce1—Ce1 ^v	43.37 (2)
S2i—Ba1—S3ii	134.76 (3)	S1 ^{ix} —Ce1—Ce1 ^v	44.13 (2)
S2 ⁱⁱ —Ba1—S3 ⁱⁱ	82.70 (3)	S1 ^x —Ce1—Ce1 ^v	135.87 (2)
S2 ⁱ —Ba1—S3 ⁱ	82.70 (3)	Cu1 ^{vii} —Ce1—Ce1 ^v	127.412 (9)
S2 ⁱⁱ —Ba1—S3 ⁱ	134.76 (3)	Cu1 ^{viii} —Ce1—Ce1 ^v	52.589 (9)
S3 ⁱⁱ —Ba1—S3 ⁱ	79.07 (3)	Cu1 ^{ix} —Ce1—Ce1 ^v	52.883 (9)
S2 ⁱ —Ba1—S1 ⁱ	92.20 (3)	Cu1 ^x —Ce1—Ce1 ^v	127.116 (9)
S2 ⁱⁱ —Ba1—S1 ⁱ	150.38 (3)	S2 ^{vi} —Ce1—Ce1 ^{iv}	90.0
S3 ⁱⁱ —Ba1—S1 ⁱ	120.17 (3)	S2—Ce1—Ce1 ^{iv}	90.0
S3 ⁱ —Ba1—S1 ⁱ	72.09 (3)	S3 ^{vii} —Ce1—Ce1 ^{iv}	43.37 (2)
S2 ⁱ —Ba1—S1 ⁱⁱ	150.38 (3)	S3 ^{viii} —Ce1—Ce1 ^{iv}	136.63 (2)
S2 ⁱⁱ —Ba1—S1 ⁱⁱ	92.20 (3)	S1 ^{ix} —Ce1—Ce1 ^{iv}	135.87 (2)
S3 ⁱⁱ —Ba1—S1 ⁱⁱ	72.09 (3)	S1 ^x —Ce1—Ce1 ^{iv}	44.13 (2)
S3 ⁱ —Ba1—S1 ⁱⁱ	120.17 (3)	Cu1 ^{vii} —Ce1—Ce1 ^{iv}	52.589 (9)
S1 ⁱ —Ba1—S1 ⁱⁱ	79.03 (3)	Cu1 ^{viii} —Ce1—Ce1 ^{iv}	127.412 (9)
S2 ⁱ —Ba1—S1 ⁱⁱⁱ	75.41 (3)	Cu1 ^{ix} —Ce1—Ce1 ^{iv}	127.116 (9)
S2 ⁱⁱ —Ba1—S1 ⁱⁱⁱ	75.41 (3)	Cu1 ^x —Ce1—Ce1 ^{iv}	52.883 (9)
S3 ⁱⁱ —Ba1—S1 ⁱⁱⁱ	139.386 (18)	Cel ^v —Cel—Cel ^{iv}	180.0
S3 ⁱ —Ba1—S1 ⁱⁱⁱ	139.386 (18)	S1—Cu1—S3	108.10 (6)
S1 ⁱ —Ba1—S1 ⁱⁱⁱ	74.99 (3)	S1—Cu1—S2 ⁱⁱ	108.60 (4)
S1 ⁱⁱ —Ba1—S1 ⁱⁱⁱ	74.99 (3)	S3—Cu1—S2 ⁱⁱ	108.88 (4)
S2 ⁱ —Ba1—Cu1 ⁱⁱ	169.52 (3)	S1—Cu1—S2 ⁱ	108.60 (4)
S2 ⁱⁱ —Ba1—Cu1 ⁱⁱ	104.08 (2)	S3—Cu1—S2 ⁱ	108.88 (4)
S3 ⁱⁱ —Ba1—Cu1 ⁱⁱ	39.54 (3)	S2 ⁱⁱ —Cu1—S2 ⁱ	113.63 (6)
S3 ⁱ —Ba1—Cu1 ⁱⁱ	87.14 (2)	S1—Cu1—Ce1 ⁱ	134.96 (2)
S1 ⁱ —Ba1—Cu1 ⁱⁱ	87.08 (2)	S3—Cu1—Ce1 ⁱ	55.64 (3)
S1 ⁱⁱ —Ba1—Cu1 ⁱⁱ	39.47 (3)	S2 ⁱⁱ —Cu1—Ce1 ⁱ	116.38 (4)
S1 ⁱⁱⁱ —Ba1—Cu1 ⁱⁱ	114.38 (2)	S2 ⁱ —Cu1—Ce1 ⁱ	55.07 (3)
S2 ⁱ —Ba1—Cu1 ⁱ	104.08 (2)	S1—Cu1—Ce1 ⁱⁱ	134.96 (2)

Table SI2 All the bond angles (in degrees) in $BaCeCuS_3$

S2 ⁱⁱ —Ba1—Cu1 ⁱ	169.52 (3)	S3—Cu1—Ce1 ⁱⁱ	55.64 (3)
S3 ⁱⁱ —Ba1—Cu1 ⁱ	87.14 (2)	S2 ⁱⁱ —Cu1—Ce1 ⁱⁱ	55.07 (3)
S3 ⁱ —Ba1—Cu1 ⁱ	39.54 (3)	S2 ⁱ —Cu1—Ce1 ⁱⁱ	116.38 (4)
S1 ⁱ —Ba1—Cu1 ⁱ	39.47 (3)	Cel ⁱ —Cul—Cel ⁱⁱ	74.822 (19)
S1 ⁱⁱ —Ba1—Cu1 ⁱ	87.08 (2)	S1—Cu1—Ce1 ^{ix}	56.13 (3)
S1 ⁱⁱⁱ —Ba1—Cu1 ⁱ	114.38 (2)	S3—Cu1—Ce1 ^{ix}	135.67 (2)
Cu1 ⁱⁱ —Ba1—Cu1 ⁱ	69.030 (19)	S2 ⁱⁱ —Cu1—Ce1 ^{ix}	54.49 (3)
S2 ⁱ —Ba1—Cu1	40.810 (19)	S2 ⁱ —Cu1—Ce1 ^{ix}	115.41 (4)
S2 ⁱⁱ —Ba1—Cu1	40.810 (19)	Cel ⁱ —Cul—Cel ^{ix}	165.31 (3)
S3 ⁱⁱ —Ba1—Cu1	113.88 (3)	Cel ⁱⁱ —Cul—Cel ^{ix}	103.537 (11)
S3 ⁱ —Ba1—Cu1	113.88 (3)	S1—Cu1—Ce1 ^x	56.13 (3)
S1 ⁱ —Ba1—Cu1	125.55 (2)	S3—Cu1—Ce1 ^x	135.67 (2)
S1 ⁱⁱ —Ba1—Cu1	125.55 (2)	S2 ⁱⁱ —Cu1—Ce1 ^x	115.41 (4)
S1 ⁱⁱⁱ —Ba1—Cu1	68.52 (3)	S2 ⁱ —Cu1—Ce1 ^x	54.49 (3)
Cu1 ⁱⁱ —Ba1—Cu1	144.563 (10)	Cel ⁱ —Cul—Cel ^x	103.537 (11)
Cul ⁱ —Bal—Cul	144.563 (10)	Cel ⁱⁱ —Cul—Cel ^x	165.31 (3)
S2 ⁱ —Ba1—Ba1 ^{iv}	49.233 (18)	Cel ^{ix} —Cu1—Cel ^x	74.234 (18)
S2 ⁱⁱ —Ba1—Ba1 ^{iv}	130.768 (18)	S1—Cu1—Ba1 ^{vii}	61.09 (3)
S3 ⁱⁱ —Ba1—Ba1 ^{iv}	129.534 (17)	S3—Cu1—Ba1 ^{vii}	61.05 (3)
S3 ⁱ —Ba1—Ba1 ^{iv}	50.467 (17)	S2 ⁱⁱ —Cu1—Ba1 ^{vii}	157.70 (4)
S1 ⁱ —Ba1—Ba1 ^{iv}	50.484 (16)	S2 ⁱ —Cu1—Ba1 ^{vii}	88.67 (3)
S1 ⁱⁱ —Ba1—Ba1 ^{iv}	129.514 (16)	Cel ⁱ —Cu1—Ba1 ^{vii}	75.832 (13)
S1 ⁱⁱⁱ —Ba1—Ba1 ^{iv}	90.0	Cel ⁱⁱ —Cul—Bal ^{vii}	116.34 (2)
Cu1 ⁱⁱ —Ba1—Ba1 ^{iv}	124.514 (10)	Cel ^{ix} —Cul—Bal ^{vii}	116.95 (2)
Cul ⁱ —Bal—Bal ^{iv}	55.485 (10)	Cel ^x —Cul—Bal ^{vii}	76.661 (13)
Cu1—Ba1—Ba1 ^{iv}	90.0	S1—Cu1—Ba1 ^{viii}	61.09 (3)
S2 ⁱ —Ba1—Ba1 ^v	130.768 (18)	S3—Cu1—Ba1 ^{viii}	61.05 (3)
S2 ⁱⁱ —Ba1—Ba1 ^v	49.233 (18)	S2 ⁱⁱ —Cu1—Ba1 ^{viii}	88.67 (3)
S3 ⁱⁱ —Ba1—Ba1 ^v	50.467 (17)	S2 ⁱ —Cu1—Ba1 ^{viii}	157.70 (4)
S3 ⁱ —Ba1—Ba1 ^v	129.534 (17)	Cel ⁱ —Cul—Bal ^{viii}	116.34 (2)

S1 ⁱ —Ba1—Ba1 ^v	129.514 (16)	Cel ⁱⁱ —Cul—Bal ^{viii}	75.832 (13)
S1 ⁱⁱ —Ba1—Ba1 ^v	50.484 (16)	Ce1 ^{ix} —Cu1—Ba1 ^{viii}	76.661 (13)
S1 ⁱⁱⁱ —Ba1—Ba1 ^v	90.0	Ce1 ^x —Cu1—Ba1 ^{viii}	116.95 (2)
Cu1 ⁱⁱ —Ba1—Ba1 ^v	55.485 (10)	Ba1 ^{vii} —Cu1—Ba1 ^{viii}	69.030 (19)
Cu1 ⁱ —Ba1—Ba1 ^v	124.514 (10)	S1—Cu1—Ba1	129.30 (4)
Cu1—Ba1—Ba1 ^v	90.0	S3—Cu1—Ba1	122.60 (4)
Ba1 ^{iv} —Ba1—Ba1 ^v	180.0	S2 ⁱⁱ —Cu1—Ba1	56.89 (3)
S2 ^{vi} —Ce1—S2	173.75 (2)	S2 ⁱ —Cu1—Ba1	56.89 (3)
S2 ^{vi} —Ce1—S3 ^{vii}	96.69 (4)	Cel ⁱ —Cul—Bal	80.399 (16)
S2—Ce1—S3 ^{vii}	87.59 (4)	Cel ⁱⁱ —Cul—Bal	80.399 (16)
S2 ^{vi} —Ce1—S3 ^{viii}	96.69 (4)	Cel ^{ix} —Cu1—Ba1	84.927 (17)
S2—Ce1—S3 ^{viii}	87.59 (3)	Cel ^x —Cul—Bal	84.927 (17)
S3 ^{vii} —Ce1—S3 ^{viii}	93.27 (4)	Ba1 ^{vii} —Cu1—Ba1	145.341 (10)
S2 ^{vi} —Ce1—S1 ^{ix}	86.79 (3)	Ba1 ^{viii} —Cu1—Ba1	145.341 (10)
S2—Ce1—S1 ^{ix}	88.87 (3)	Cu1—S1—Ce1 ^{ix}	81.01 (4)
S3 ^{vii} —Ce1—S1 ^{ix}	176.36 (4)	Cu1—S1—Ce1 ^x	81.01 (4)
S3 ^{viii} —Ce1—S1 ^{ix}	87.38 (3)	Cel ^{ix} —S1—Cel ^x	91.75 (4)
S2 ^{vi} —Ce1—S1 ^x	86.79 (3)	Cu1—S1—Ba1 ^{vii}	79.43 (4)
S2—Ce1—S1 ^x	88.87 (3)	Ce1 ^{ix} —S1—Ba1 ^{vii}	159.46 (5)
S3 ^{vii} —Ce1—S1 ^x	87.38 (3)	Ce1 ^x —S1—Ba1 ^{vii}	91.316 (15)
S3 ^{viii} —Ce1—S1 ^x	176.36 (4)	Cu1—S1—Ba1 ^{viii}	79.43 (4)
S1 ^{ix} —Ce1—S1 ^x	91.75 (4)	Ce1 ^{ix} —S1—Ba1 ^{viii}	91.316 (15)
S2 ^{vi} —Ce1—Cu1 ^{vii}	137.492 (18)	Ce1 ^x —S1—Ba1 ^{viii}	159.46 (5)
S2—Ce1—Cu1 ^{vii}	45.524 (19)	Ba1 ^{vii} —S1—Ba1 ^{viii}	79.03 (3)
S3 ^{vii} —Ce1—Cu1 ^{vii}	43.31 (3)	Cu1—S1—Ba1 ^{xi}	174.14 (6)
S3 ^{viii} —Ce1—Cu1 ^{vii}	98.96 (3)	Cel ^{ix} —S1—Bal ^{xi}	94.95 (3)
S1 ^{ix} —Ce1—Cu1 ^{vii}	133.05 (3)	Ce1 ^x —S1—Ba1 ^{xi}	94.95 (3)
S1 ^x —Ce1—Cu1 ^{vii}	79.08 (3)	Ba1 ^{vii} —S1—Ba1 ^{xi}	105.00 (3)
S2 ^{vi} —Ce1—Cu1 ^{viii}	137.492 (18)	Ba1 ^{viii} —S1—Ba1 ^{xi}	105.00 (3)
S2—Ce1—Cu1 ^{viii}	45.524 (19)	Cu1 ^{vii} —S2—Cu1 ^{viii}	113.63 (6)

S3 ^{vii} —Ce1—Cu1 ^{viii}	98.96 (3)	Cu1 ^{vii} —S2—Ce1 ^{xii}	80.23 (4)
S3 ^{viii} —Ce1—Cu1 ^{viii}	43.31 (3)	Cu1 ^{viii} —S2—Ce1 ^{xii}	80.23 (4)
S1 ^{ix} —Ce1—Cu1 ^{viii}	79.08 (3)	Cu1 ^{vii} —S2—Ce1	79.40 (4)
S1 ^x —Ce1—Cu1 ^{viii}	133.05 (3)	Cu1 ^{viii} —S2—Ce1	79.40 (4)
Cu1 ^{vii} —Ce1—Cu1 ^{viii}	74.822 (18)	Ce1 ^{xii} —S2—Ce1	142.31 (5)
S2 ^{vi} —Ce1—Cu1 ^{ix}	45.282 (19)	Cu1 ^{vii} —S2—Ba1 ^{viii}	163.53 (5)
S2—Ce1—Cu1 ^{ix}	131.19 (2)	Cu1 ^{viii} —S2—Ba1 ^{viii}	82.30 (2)
S3 ^{vii} —Ce1—Cu1 ^{ix}	140.76 (3)	Ce1 ^{xii} —S2—Ba1 ^{viii}	107.77 (3)
S3 ^{viii} —Ce1—Cu1 ^{ix}	84.10 (3)	Ce1—S2—Ba1 ^{viii}	100.51 (3)
S1 ^{ix} —Ce1—Cu1 ^{ix}	42.86 (3)	Cu1 ^{vii} —S2—Ba1 ^{vii}	82.30 (2)
S1 ^x —Ce1—Cu1 ^{ix}	97.66 (3)	Cu1 ^{viii} —S2—Ba1 ^{vii}	163.53 (5)
Cu1 ^{vii} —Ce1—Cu1 ^{ix}	175.051 (11)	Ce1 ^{xii} —S2—Ba1 ^{vii}	107.77 (3)
Cu1 ^{viii} —Ce1—Cu1 ^{ix}	105.251 (11)	Ce1—S2—Ba1 ^{vii}	100.51 (3)
S2 ^{vi} —Ce1—Cu1 ^x	45.282 (19)	Ba1 ^{viii} —S2—Ba1 ^{vii}	81.53 (4)
S2—Ce1—Cu1 ^x	131.19 (2)	Cu1—S3—Ce1 ⁱⁱ	81.05 (4)
S3 ^{vii} —Ce1—Cu1 ^x	84.10 (3)	Cu1—S3—Ce1 ⁱ	81.05 (4)
S3 ^{viii} —Ce1—Cu1 ^x	140.76 (3)	Cel ⁱⁱ —S3—Cel ⁱ	93.27 (4)
S1 ^{ix} —Ce1—Cu1 ^x	97.66 (3)	Cu1—S3—Ba1 ^{viii}	79.41 (4)
S1 ^x —Ce1—Cu1 ^x	42.86 (3)	Cel ⁱⁱ —S3—Bal ^{viii}	90.552 (15)
Cu1 ^{vii} —Ce1—Cu1 ^x	105.251 (11)	Cel ⁱ —S3—Bal ^{viii}	159.25 (5)
Cu1 ^{viii} —Ce1—Cu1 ^x	175.051 (11)	Cu1—S3—Ba1 ^{vii}	79.41 (4)
Cu1 ^{ix} —Ce1—Cu1 ^x	74.234 (18)	Cel ⁱⁱ —S3—Bal ^{vii}	159.25 (5)
S2 ^{vi} —Ce1—Ce1 ^v	90.0	Ce1 ⁱ —S3—Ba1 ^{vii}	90.552 (15)
S2—Ce1—Ce1 ^v	90.0	Ba1 ^{viii} —S3—Ba1 ^{vii}	79.07 (3)
S3 ^{vii} —Ce1—Ce1 ^v	136.63 (2)		

Symmetry codes: (i) -x+1/2, y+1/2, z-1/2; (ii) -x+1/2, y-1/2, z-1/2; (iii) x+1/2, -y+1/2, -z+1/2; (iv) x, y+1, z; (v) x, y-1, z; (vi) x-1/2, -y+1/2, -z+3/2; (vii) -x+1/2, y+1/2, z+1/2; (viii) -x+1/2, y-1/2, z+1/2; (ix) -x, -y, -z+1; (x) -x, -y+1, -z+1; (xi) x-1/2, -y+1/2, -z+1/2; (xii) x+1/2, -y+1/2, -z+3/2.

Section SI1: Optical Properties

The optical parameters are computed from the complex dielectric function $\varepsilon(\omega) = \varepsilon'(\omega) + \varepsilon''(\omega)$. The imaginary part of the dielectric function $\varepsilon''(\omega)$ is given in terms of electronic band structure as

$$\varepsilon_{ij}^{"}(\omega) = \frac{4\pi^2 e^2}{V} \lim_{q \to 0} \sum_{c,v,\vec{k}} 2w_{\vec{k}} \delta(\varepsilon_{c\vec{k}} - \varepsilon_{v\vec{k}} - \omega) \times \langle u_{c\vec{k}+\hat{e}_iq} \left| u_{v\vec{k}} \rangle \langle u_{c\vec{k}+\hat{e}_jq} \left| u_{v\vec{k}} \rangle^* \right.$$
(S1-1)

where index v indicates the valence band (VB), c indicates the conduction band (CB) states; V is the volume of the unit cell; $\varepsilon_{c\vec{k}}$ and $\varepsilon_{v\vec{k}}$ are CB and VB single-electron energy at \vec{k} ; $u_{c\vec{k}}$ is the cell periodic part of the orbitals at the wave vector \vec{k} ; $w_{\vec{k}}$ is the weight of the k-points, \hat{e}_i and \hat{e}_j are the unit vectors for the three Cartesian directions.

The Kramers-Kronig transformation is used to obtain the real part of the dielectric function $\varepsilon'(\omega)$ from $\varepsilon''(\omega)$:

$$\varepsilon_{ij}^{'}(\omega) = 1 + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\varepsilon_{ij}^{''}(\omega')\omega'}{\omega^{'2} - \omega^{2} + i\eta} d\omega'$$
(S1-2)

Where P is the principal value and η is a small complex shift. The absorption coefficient $\alpha(\omega)$ can be expressed in terms of $\varepsilon'(\omega)$ and $\varepsilon''(\omega)$ as:

$$\alpha(\omega) = \frac{\sqrt{2\omega}}{c} \left[\sqrt{\varepsilon'(\omega)^2 + \varepsilon''(\omega)^2} - \varepsilon'(\omega) \right]^{1/2}$$
(S1-3)

Section SI2: Thermoelectric properties

The thermoelectric parameters can be computed using the electronic band structure and semiclassical Boltzmann transport theory within the rigid band approach.

The shift in the chemical potential can be used to simulate the carrier concentration (*p*- or *n*-type) in the system. The electrical conductivity (σ_{ij}) can be expressed in terms of chemical potential (μ) and temperature (T) as:

$$\sigma_{ij}(T;\mu) = \frac{1}{V} \int \sigma_{ij}(\epsilon) \left[-\frac{\partial f_{\mu}(T;\mu)}{\partial \epsilon} \right] d\epsilon$$
(S2-1)

where $f_{\mu}(T;\mu)$ is the Fermi function, V is the volume, ϵ is the energy. Further, the σ_{ij} as function of energy (ϵ) can be expressed as:

$$\sigma_{ij}(\epsilon) = \frac{1}{N} \sum_{n,\vec{k}} \sigma_{ij}(n,\vec{k}) \,\delta(\epsilon - \epsilon_{n,\vec{k}})$$
(S2-2)

Where *N* is the number of \vec{k} points in the Brillouin zone and $\epsilon_{n,\vec{k}}$ are the band energies. $\sigma_{ij}(n,\vec{k})$ can be obtained using relaxation time $\tau_{n,\vec{k}}$ and group velocity $\vec{v}(n,\vec{k})$ as:

$$\sigma_{ij}(n,\vec{k}) = e^2 \tau_{n,\vec{k}} v_i(n,\vec{k}) v_j(n,\vec{k})$$
(S2-3)

The Seebeck coefficient tensor (S_{ij}) as a function of temperature (T) and chemical potential (μ) can be expressed as:

$$S_{ij}(T;\mu) = \frac{1}{eTV\sigma_{ij}(T;\mu)} \int \sigma_{ij}(\epsilon)(\epsilon - \mu) \left[-\frac{\partial f_{\mu}(T;\mu)}{\partial \epsilon} \right] d\epsilon$$

$$zT = \frac{S^2 \sigma T}{1 - \frac$$

The figure of merit (zT) is given as $\binom{k_{el} + k_{lat}}{k_{lat}}$. Here, the k_{el} is the electronic component and k_l is the lattice (phonon) component of thermal conductivity. The k_{el} is related to electrical

conductivity (σ) as $k_{el} = L_0 \sigma T$ (Wiedemann-Franz relation), where $L_0 = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2$ is the Lorentz number. The quantities σ and k_{el} are computed with respect to the relaxation time $\tau = (T_0 \times n_0^{1/3})/(Tn^{1/3}) \times 10^{-14} s$ where n_0 is the carrier concentration at $T_0 = 300 K$.