SUPPORTING INFORMATION

Unprecedented *pseudo* zeroth order kinetics of catecholase-like activity of mixed valence Mn^{II}Mn₂^{III} complexes

Sanchari Dasgupta,^{*,a,b} Suhana Karim,^a Somanjana Khatua,^c Amit Adhikary,^a Krishnendu Acharya,^c Ennio Zangrando,^d Suvendu Maity,^e Debasis Das ^{*,a}

^a Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India

^b Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St-Quentin-en-Yvelines, Université Paris-Saclay, 78035 Versailles Cedex, France

^c Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India ^d Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy

^e Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India

Mn(1)-O(1)	1.884(3)	Mn(3)-O(2)	1.881(3)
Mn(1)-N(1)	2.005(4)	Mn(3)-N(2)	1.992(4)
Mn(1)-O(3)	1.865(3)	Mn(3)-O(4)	1.881(3)
Mn(1)-O(11)	1.956(4)	Mn(3)-O(7)	1.936(4)
Mn(1)-O(9)	2.183(3)	Mn(3)-O(5)	2.217(3)
Mn(1)-O(1w)	2.317(4)	Mn(3)-O(2w)	2.329(4)
Mn(2)-O(3)	2.157(3)	Mn(2)-O(8)	2.139(4)
Mn(2)-O(4)	2.143(3)	Mn(2)-O(10)	2.197(4)
Mn(2)-O(6)	2.186(4)	Mn(2)-O(12)	2.132(4)

Table S1. Selected bond distances (Å) and angles (°) for complex **1.**

Table S2. Selected bond distances (Å) and angles (°) for complex 2.

Mn(1)-O(1)	1.8960(14)	Mn(1)-O(3)	2.3216(11)
Mn(1)-N(1)	2.0060(13)	Mn(2)-O(2)	2.1177(10)
Mn(1)-O(2)	1.8714(13)	Mn(2)-O(5)	2.2102(11)
Mn(1)-O(6)	1.9471(12)	Mn(2)-O(7)	2.1476(12)
Mn(1)-O(4)	2.1775(10)		

	Complex 1					
O(3)-Mn(1)-O(1)	174.11(15)	O(4)-Mn(2)-O(6)	90.08(13)			
O(3)-Mn(1)-O(11)	96.69(14)	O(3)-Mn(2)-O(6)	87.18(13)			
O(1)-Mn(1)-O(11)	89.00(15)	O(12)-Mn(2)-O(10)	91.68(15)			
O(3)-Mn(1)-N(1)	82.91(15)	O(8)-Mn(2)-O(10)	88.86(16)			
O(1)-Mn(1)-N(1)	91.21(16)	O(4)-Mn(2)-O(10)	91.19(13)			
O(11)-Mn(1)-N(1)	167.36(15)	O(3)-Mn(2)-O(10)	91.56(13)			
O(3)-Mn(1)-O(9)	93.16(13)	O(6)-Mn(2)-O(10)	178.48(15)			
O(1)-Mn(1)-O(9)	87.76(14)	O(2)-Mn(3)-O(4)	174.04(14)			
O(11)-Mn(1)-O(9)	95.70(14)	O(2)-Mn(3)-O(7)	86.25(15)			
N(1)-Mn(1)-O(9)	96.94(15)	O(4)-Mn(3)-O(7)	98.82(14)			
O(3)-Mn(1)-O(1w)	90.37(15)	O(2)-Mn(3)-N(2)	91.36(16)			
O(1)-Mn(1)-O(1w)	89.02(15)	O(4)-Mn(3)-N(2)	83.24(15)			
O(11)-Mn(1)-O(1w)	81.06(15)	O(7)-Mn(3)-N(2)	173.13(15)			
N(1)-Mn(1)-O(1w)	86.31(16)	O(2)-Mn(3)-O(5)	89.82(13)			
O(9)-Mn(1)-O(1w)	175.47(14)	O(4)-Mn(3)-O(5)	93.13(13)			
O(12)-Mn(2)-O(8)	176.99(13)	O(7)-Mn(3)-O(5)	91.68(14)			
O(12)-Mn(2)-O(4)	91.80(13)	N(2)-Mn(3)-O(5)	94.76(15)			
O(8)-Mn(2)-O(4)	91.15(13)	O(2)-Mn(3)-O(2w)	90.01(14)			
O(12)-Mn(2)-O(3)	87.72(13)	O(4)-Mn(3)-O(2w)	87.38(14)			
O(8)-Mn(2)-O(3)	89.30(13)	O(7)-Mn(3)-O(2w)	84.51(15)			
O(4)-Mn(2)-O(3)	177.22(13)	N(2)-Mn(3)-O(2w)	89.05(15)			
O(12)-Mn(2)-O(6)	89.10(15)	O(5)-Mn(3)-O(2w)	176.19(14)			
O(8)-Mn(2)-O(6)	90.29(16)					

Table S3. Coordination bond angles (°) for compounds 1-2.

Complex 2				
O(2)-Mn(1)-O(1)	173.18(4)	O(6)-Mn(1)-O(3)	81.76(4)	
O(2)-Mn(1)-O(6)	95.62(5)	N(1)-Mn(1)-O(3)	86.22(5)	
O(1)-Mn(1)-O(6)	90.09(5)	O(4)-Mn(1)-O(3)	176.83(4)	
O(2)-Mn(1)-N(1)	82.97(5)	O(2)-Mn(2)-O(2')	180.0	
O(1)-Mn(1)-N(1)	90.68(5)	O(5)-Mn(2)-O(5')	180.0	
O(6)-Mn(1)-N(1)	167.97(4)	O(7')-Mn(2)-O(7')	180.0	
O(2)-Mn(1)-O(4)	94.40(4)	O(2)-Mn(2)-O(7)	88.19(5)	
O(1)-Mn(1)-O(4)	88.80(5)	O(2)-Mn(2)-O(7')	91.81(5)	
O(6)-Mn(1)-O(4)	95.12(4)	O(2)-Mn(2)-O(5)	93.53(5)	
N(1)-Mn(1)-O(4)	96.90(4)	O(2)-Mn(2)-O(5')	86.47(5)	
O(2)-Mn(1)-O(3)	86.49(5)	O(7)-Mn(2)-O(5)	90.70(5)	
O(1)-Mn(1)-O(3)	90.64(5)	O(7)-Mn(2)-O(5')	89.30(5)	

Primed atoms. at 1-x, -y, 1-z.

Complex 1						
D-H	d(D-H)	d(HA)	d(DA)	d(DA)	A	Symmetry
O(1w)-H(21)	0.75(8)	2.01(8)	2.750(12)	171(8)	O(7w)	1-x, 1-y, 1-z
O(1w)-H(22)	0.77(7)	1.95(7)	2.713(7)	174(7)	O(6w)	1+x, y, z
O(2w)-H(11)	0.86(5)	2.00(5)	2.852(7)	172(3)	O(3w)	2-x, -y, -z
O(2w)-H(12)	0.83(4)	1.99(4)	2.816(6)	178(8)	O(3w)	
O(3w)-H(31)	0.85(4)	1.99(4)	2.838(5)	175(7)	O(10)	
O(3w)-H(32)	0.85(5)	2.07(4)	2.869(6)	155(6)	O(4w)	1-x, 1-y, -z
O(4w)-H(41)	0.84(6)	2.23(5)	3.056(6)	168(7)	O(9)	-1+x, y, z
O(4w)-H(42)	0.83(7)	2.42(7)	3.127(6)	144(7)	O(2)	-1+x, 1+y, z
O(5w)-H(51)	0.84(7)	2.33(6)	3.026(7)	141(6)	O(11)	
O(5w)-H(52)	0.83(4)	2.02(4)	2.854(67)	180(11)	O(5)	x, 1+y, z
O(6w)-H(61)	0.81(7)	2.04(7)	2.843(6)	177(10)	O(6)	1-x, 1-y, 1-z
O(6w)-H(62)	0.75(6)	2.21(6)	2.948(7)	170(9)	O(1w)	1-x, 1-y,1-z
O(7w)-H(71)	0.92(12)	1.89(14)	2.673(9)	142(13)	O(5w)	1-x, 1-y, 1-z
O(7w)-H(72)	0.72(11)				-	
Complex 2						
O(1s)-H(1s)	0.82	2.01	2.806(2)	162	O(5)	1-x,-y,1-z
O(2s)-H(2s)	0.82	2.09	2.890(3)	166	O(4)	
O(3)-H(3a)	0.82(2)	1.89(2)	2.707(2)	176.3(17)	O(1s)	

Table S4. H-bonding parameters for complexes 1 and 2

Table S5. Details of X-band EPR experiments for complexes 1 and 2

Complex	conditions	microwave	modulation	BO-	sweep
		frequency	amplitude	Sweep	rate (S)
			(mT)	(mT)	
1	77 K, acetonitrile solution	9.4429	200	599.6	60
1	solid state	9.4347	200	599.6	60
1	77 K, methanol medium	9.4431	200	399.46	120
1	1:1(v/v) methanol-water	9.4434	200	399.46	120
2	77 K, acetonitrile solution	9.4437	200	499.4	60
2	solid state	9.4447	200	499.4	60
2	77 K, methanol medium	9.4413	200	399.46	120
2	1:1 (v/v) methanol-water	9.4486	200	399.46	120

Table S6. The rate $(M \min^{-1})$ of the complexes for catecholase-like activity at a concentration higher than 600 equivalents.

Catalyst : Substrate Molar ratio	Complex 1	Complex 2
1:700	1.56×10 ⁻⁷	1.62×10 ⁻⁷
1:800	1.13×10 ⁻⁷	1.39×10 ⁻⁷
1:900	1.01×10 ⁻⁷	7.56×10 ⁻⁸

Table S7. Initial rate (M min⁻¹) and the overall rate (M min⁻¹) of complexes **1** and **2** for pseudo zero order kinetics of catecholase-like activity in acetonitrile medium. The rates were obtained by dividing individual slopes and molar extinction coefficient (ϵ) of 3,5-DTBQ.

Catalyst: Substrate	Complex 1		Co	Complex 2	
Molar ratio	Initial Rate	Overall Rate	Initial Rate	Overall Rate	
1:100	4.21×10 ⁻⁶	3.16×10 ⁻⁶	4.22×10 ⁻⁶	3.17×10 ⁻⁶	
1:200	5.37×10 ⁻⁶	3.28×10 ⁻⁶	5.36×10 ⁻⁶	3.29×10 ⁻⁶	
1:300	5.74×10 ⁻⁶	3.49×10 ⁻⁶	5.95×10 ⁻⁶	3.24×10 ⁻⁶	
1:400	6.21×10 ⁻⁶	3.59×10 ⁻⁶	6.37×10 ⁻⁶	3.31×10 ⁻⁶	
1:500	6.42×10 ⁻⁶	3.72×10 ⁻⁶	6.84×10 ⁻⁶	3.30×10 ⁻⁶	
1:600	6.89×10 ⁻⁶	3.67×10 ⁻⁶	6.90×10 ⁻⁶	3.46×10 ⁻⁶	

Table S8. Crystal data and details of structure refinements for compounds 1-2.

	1	2
CCDC Number	1916631	1916632
Empirical formula	$C_{30}H_{50}Br_2Mn_3N_2O_{19}$	$C_{35}H_{54}Br_4Mn_3N_2O_{17}$
Formula weight	1067.36	1259.26
Crystal system	Triclinic	Triclinic
Space group	PĪ	PĪ
<i>a</i> (Å)	10.981(5)	8.2310(16)
<i>b</i> (Å)	11.954(5)	12.816(3)
<i>c</i> (Å)	17.826(5)	13.335(3)
α (deg)	100.945(5)	61.78(3)
β (deg)	90.352(5)	85.43(3)
γ (deg)	108.241(5)	73.33(3)
Volume ($Å^3$)	2176.5(15)	1184.9(5)
Ζ	2	1
D_{calcd} (g cm ⁻³)	1.629	1.765
μ Mo-Kα, (mm ⁻¹)	2.765	3.972
F(000)	1082	627
θ_{\max} (°)	25.15	29.71
Reflns collected	31467	24638
Unique reflections	7641	7015
R _{int}	0.0738	0.0521
Observed $I > 2\sigma(I)$	4840	6833
Parameters	555	296
Goodness of fit (F ²)	1.035	1.159
$R1/WR2 (I > 2\sigma(I))^{[a]}$	0.0484/ 0.1046	0.0271/0.0657
$\Delta \rho \ (e/Å^3)$	0.733, -0.577	0.538, -1.089

^[a] $R1 = \Sigma | Fo| - Fc| / \Sigma Fo|$, $wR2 = [\Sigma w (Fo^2 - Fc^2)^2 \Sigma w (Fo^2)^2]^{1/2}$

Fig. S1. FT-IR spectrum of complex 1.

Fig. S2. FT-IR spectrum of complex 2.

Fig. S3. UV-Vis spectra of complexes 1 and 2 in acetonitrile medium.

Fig. S4. UV-Vis spectra of complexes 1 and 2 in aqueous medium.

Fig. S5. Hydrogen bonding interactions in complex 2 viewed along b axis.

Fig. S6. ESI-MS spectrum of complex 1 in acetonitrile medium.

Fig. S7. ESI-MS spectrum of complex 1 in an aqueous medium.

Fig. S8. ESI-MS spectrum of complex 1 in methanol medium.

Fig. S9. ESI-MS spectrum of complex 2 in acetonitrile medium.

Fig. S10 ESI-MS spectrum of complex 2 in an aqueous medium.

Fig. S11 ESI-MS spectrum of complex 2 in methanol medium.

Fig. S12. Powder X-ray diffraction pattern of (a) complex 1 and (b) complex 2.

Fig. S13. X-Band EPR spectra of complexes 1 and 2 in methanol medium at 77 K.

Fig. S14. X-Band EPR spectra of complexes (a) **1** and (b) **2** in 1:1(v/v) methanol-water medium at 77 K.

Fig. S15. Model used to fit the $\chi_M T$ vs. T plot of complexes 1 and 2.

Fig. S16. Increased absorbance at 400 nm at different substrate concentrations catalyzed by complex **2** in acetonitrile medium at 25 °C.

Fig. S17 Oxidation of 3,5-DTBC catalyzed by manganese(II) acetate monitored by UV-Vis spectroscopy in acetonitrile medium at 25 °C.

Fig. S18. (a) Detection of H_2O_2 by UV-Vis spectroscopy during oxidation of 3,5-DTBC catalyzed by complexes 1 and 2 in acetonitrile; (b) Release of H_2O_2 during the catalytic reaction for complexes 1 and 2 in acetonitrile. The change in absorbance with time was measured at $\lambda_{max} \sim 351$ and 356 nm for 1 and 2, respectively.

Fig. S19. Monitoring of absorbance at 400 nm in the presence of (a) TEMPO and (b) sodium azide through the catalysis with complexes **1** and **2**.

Fig. S20. Increasing absorbance at 400 nm at different substrate concentrations (higher than 600 equivalents) through the catalysis with complexes 1 and 2 in acetonitrile at 25 $^{\circ}$ C.

Fig. S21. X-Band EPR spectrum of complex 2 in the presence of 3,5-DTBC in acetonitrile at 77 K.

Fig. S22. ESI-MS spectrum of the reaction mixture of complex **1** and 3,5-DTBC in acetonitrile medium at a different time interval.

Fig. S23. ESI-MS spectrum of the reaction mixture of complex 2 and 3,5-DTBC in acetonitrile.

Fig. S24. Residual density map of complex 2.

Fig. S25. Fobs *vs* Fcalc and Fractal Dimension Plot of complex **2**. (According to K. Meindl and J. Henn (2008), Acta Cryst. A64, 404-418)