Supporting Information

Pitfalls in the structural elucidation of small molecules. A critical analysis of a decade of structural missassignments of marine natural products

Shou-Mao Shen,^{ab} Giovanni Appendino^c and Yue-Wei Guo^{*ad}

^a State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

^b School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China

^c Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy

^d Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China

*Corresponding author E-mail address: ywguo@simm.ac.cn

Contents

Table S1. Wrong carbon-carbon connectivity assignment of MNPs (2010–2021)
Table S2. Wrong constitution of a heterocyclic ring scaffold of MNPs (2010–2021)
Table S3. Functional group misidentification of MNPs (2010–2021).
Table S4. Functional group mispositioning of MNPs (2010–2021). 13
Table S5. Structural revisions of absolute configuration of MNPs (2010–2021).
Table S6. Single stereocenter misidentification of MNPs (2010–2021).
Table S7. Multiple stereocenters misidentification of MNPs (2010–2021). 25
Table S8. Structural revisions of double bond geometry of MNPs (2010–2021)
References

Table S1. Wrong carbon-carbon connectivity assignment of MNPs (2010-2021).

Only the structure elucidation methods used for the erroneous structure element are mentioned in this table.

Table S2. Wrong constitution of a heterocyclic ring scaffold of MNPs (2010-2021).

Table S2	(continued)
----------	-------------

Only the structure elucidation methods used for the erroneous structure element are mentioned in this table.

Table S3. Functional group misidentification of MNPs (2010-2021).

S11

Only the structure elucidation methods used for the erroneous structure element are mentioned in this table.

Table S4. Functional group mispositioning of MNPs (2010–2021).

no.	Proposed structure	Methods used in initial assignment	Revised structure	Basis for revision
7	H_{0}^{22} H_{1}^{22} $H_{$	NMR comparison; HMBC; biosynthetic analysis	HO 22 21 HO HO HO HO HO HO HO HO HO HO HO HO HO	total synthesis (2012, 2014) ^{124, 125}
8– 11	Br 12 H H H H H H H H H H	NMR comparison	Br 9 R N Br OCH ₃	chemical shifts (2011) ¹²⁷ total synthesis (2012) ¹²⁸ total synthesis (2015) ¹²⁹
12– 15	echinosulfonic acid A^{92} : R = OEt echinosulfonic acid B^{92} : R = OEt echinosulfonic acid B^{92} : R = OH echinosulfonic acid D^{130} : R = H sponge (1999, 2005)	NMR comparison ⁹² ; MS/MS analysis ¹³⁰	$Br \xrightarrow{H}_{SO_3H}^{CO_2CH_3} Br$	decomposition; NMR comparison (2020) ⁹³ ; MS; NMR reanalysis (2020) ⁹⁴ ; biogenetic consideration (2020) ⁹⁵
16	H ₃ COOC 1 ['] 2 ['] \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	COSY; HMBC	HO $(2^{1/2^{1/2}})$ HO $(2^{1/2^{1/2}})$ COOCH ₃	total synthesis (2011) ¹³²
17	Cl Br 2 3 tristichone C ¹³³ alga (2016)	COSY; HMBC	O Cl	computer-aided (2017) ⁹⁸
18	HO HO N N N N N N N N N N N N N N N N N	NMR comparison; HMBC	HO N OCH3 HO OH	total synthesis (2019) ¹³⁵

no.	Proposed structure	Methods used in initial assignment	Revised structure	Basis for revision
19	$ \begin{array}{c} $	NMR comparison; NOESY; HMBC	$ \begin{array}{c} $	NMR comparison; computer-aided (2019) ¹³⁷

Only the structure elucidation methods used for the erroneous structure element are mentioned in this table.

Only the structure elucidation methods used for the erroneous structure element are mentioned in this table.

Table S6. Single stereocenter misidentification of MNPs (2010-2021).

no.	Proposed structure	Methods used in initial assignment	Revised structure	Basis for revision
19	HO 10 Compositacin A ¹⁸¹ alga (2017)	ROESY; NMR comparison	HO ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	computer-aided (2017) ⁹⁸
20	HO HO Kimura-cmpd 14 ¹⁸³ alga (1999)	NMR; chemical transformation		computer-aided (2017) ⁹⁸
21	Compositacin L ¹⁸¹ alga (2017)	ROESY; NMR comparison		computer-aided (2017) ⁹⁸
22	Br HO 1(<i>R</i>)-Br- <i>ent</i> -maaliol ¹⁸⁴ alga (1989)	NOESY	HO HO	computer-aided (2017) ⁹⁸
23& 24	HO HO tagalene I ¹⁸⁵ : 4 α -CH ₂ , 4S 4-epitagalene I ¹⁸⁶ : 4 β -CH ₂ , 4 <i>R</i> mangrove (2016, 2017)	NOESY	HO HO tagalene I: 4 β -CH ₂ , 4 <i>R</i> 4-epitagalene I: 4 α -CH ₂ , 4 <i>S</i>	X-ray; NOESY reanalysis (2018) ¹⁸⁷
25& 26	HO tagalsin A ¹⁸⁸ : 4 α -CH ₂ , 4S tagalsin B ¹⁸⁸ : 4 β -CH ₂ , 4R mangrove (2005)	NOESY	HO HO tagalsin A: 4 β -CH ₂ , 4R tagalsin B: 4 α -CH ₂ , 4S	NOESY reanalysis; NMR comparison (2018) ¹⁸⁷
27	Hou 4 Hou 4 Cycloelatanene A ¹⁸⁹ alga (2011)	1D NOE	H H O H H H H H H H H H H H H H H H H H	crystalline sponge method (2018) ¹⁹⁰

no.	Proposed structure	Methods used in initial assignment	Revised structure	Basis for revision
28	Br H O O O H H H C H C I O C I O C I O C I O C I O C I O C I O C I O C I O C I O C I O C I O O O O	1D NOE; NMR comparison;		crystalline sponge method (2017) ¹⁹⁰
29	HO HO H H H H H H H H H H H H H H H H H	NOESY; TDDFT-ECD		DP4+ analysis; calculated ECD spectra; analogue comparison (2021) ¹⁹²
30& 31	(+)-xylogranatin G ¹⁹³ : R = H; (+)-xylogranatin G ¹⁹³ : R = Ac mangrove (2008)	NOESY; chemical transformation; Mosher's method		total synthesis; X-ray (2019) ¹⁹⁴ DU8+ calculation (2020) ¹⁹⁵
32	revised (2006) f f f f f f f f	ROESY; NMR comparison ¹⁹⁶ ; total synthesis ¹⁹⁷	O = OH + H O = O = OH	total synthesis (2018) ^{198, 199}
33& 34	(-)-protubonine B^{200} : R = H; (-)-protubonine B^{200} : R = Ac fungus (2010)	NOESY		total synthesis (2014) ²⁰¹
35& 36	$R \xrightarrow{H}_{H} \xrightarrow{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} \xrightarrow{H}_{H} H$	NOESY; NMR comparison		total synthesis (2016) ²⁰³ ; NMR method (2016) ²⁰⁴

Only the structure elucidation methods used for the erroneous structure element are mentioned in this table.

Table S7. Multiple stereocenters misidentification of MNPs (2010–2021).

Table S7	(continued)
----------	-------------

no.	Proposed structure	Methods used in initial assignment	Revised structure	Basis for revision
34	Br β β β β β β β β	ROESY	Br Br ÖH	computer-aided (2017) ⁹⁸
35	o Br coll-cmpd 4 ³⁰² alga (1989)	NMR comparison		computer-aided (2017) ⁹⁸
36	axiriabiline A ³⁰³ sponge (2017)	ROESY		X-ray (2019) ³⁰⁴
37	(+)-hypoxylactone ³⁰⁵ fungus (1999)	NOESY		synthesis (2020) ³⁰⁶
38	penisporolide A ³⁰⁷ fungus (2007)	NOESY; NMR comparison		NMR method (2016) ²⁰⁴
39	penisporolide B ³⁰⁷ fungus (2007)	NMR comparison		total synthesis (2016) ²⁰³
40& 41	HO 12 H O O O O O O O O O O O O O O O O O O	NOESY; NMR comparison	HO, 12 13 0 H 7''OH	total synthesis (2013) ^{308, 309}
42	HO HO HO H H H H H H H H H H H H H H H	NOESY		J-based; acid hydrolysis; HPLC analysis (2013) ³¹¹

Only the structure elucidation methods used for the erroneous structure element are mentioned in this table.

Table S8. Structural revisions of double bond geometry of MNPs (2010-2021).

Only the structure elucidation methods used for the erroneous structure element are mentioned in this table.

References

- 1 S.-H. Qi, G.-C. Su, Y.-F. Wang, Q.-Y. Liu and C.-H. Gao, Chem. Pharm. Bull., 2009, 57, 87-88, doi: 10.1248/cpb.57.87.
- 2 A. Berndt, M. Gruner, A. W. Schmidt and H.-J. Knöelker, Synlett, 2013, 24, 2102-2106, doi: 10.1055/s-0033-1339655.
- 3 J. Dai, Y. Liu, Y.-D. Zhou and D. G. Nagle, J. Nat. Prod., 2007, 70, 1824-1826, doi: 10.1021/np070337f.
- 4 E. E. Podlesny and M. C. Kozlowski, J. Nat. Prod., 2012, 75, 1125-1129, doi: 10.1021/np300141t.
- 5 T. Liu, Z.-L. Li, Y. Wang, L. Tian, Y.-H. Pei and H.-M. Hua, Nat. Prod. Res., 2011, 25, 1596-1599, doi: 10.1080/14786419.2010.490916.
- 6 M. T. Green, G. R. Peczkowski, A. J. Al-Ani, S. L. Benjamin, N. S. Simpkins and A. M. Jones, RSC Adv., 2017, 7, 48754-48758, doi: 10.1039/c7ra10483a.
- 7 S. Um, T. J. Choi, H. Kim, B. Y. Kim, S.-H. Kim, S. K. Lee, K.-B. Oh, J. Shin and D.-C. Oh, J. Org. Chem., 2013, 78, 12321-12329, doi: 10.1021/jo401974g.
- J. Hur, J. Jang, J. Sim, W. S. Son, H.-C. Ahn, T. S. Kim, Y.-H. Shin, C. Lim, S. Lee, H. An, S.-H. Kim, D.-C. Oh, E.-K. Jo, J. Jang, J. Lee and Y.-G. Suh, *Angew. Chem., Int. Ed.*, 2018, 57, 3069-3073, doi: 10.1002/anie.201711286.
- 9 R. Irie, K. Takada, Y. Ise, S. Ohtsuka, S. Okada, K. R. Gustafson and S. Matsunaga, *Org. Lett.*, 2017, **19**, 5395-5397, doi: 10.1021/acs.orglett.7b02835.
- 10 K. Takada, B. W. Choi, M. A. Rashid, W. R. Gamble, J. H. Cardellina, II, Q. N. Van, J. R. Lloyd, J. B. McMahon and K. R. Gustafson, J. Nat. Prod., 2007, 70, 428-431, doi: 10.1021/np0604984.
- D. Takemoto, Y. Takekawa, R. W. M. van Soest, N. Fusetani and S. Matsunaga, *Biosci., Biotechnol., Biochem.*, 2007, **71**, 2697-2700, doi: 10.1271/bbb.70293.
- 12 C. Chevallier, O. Laprévote, J. Bignon, C. Debitus, D. Guénard and T. Sévenet, *Nat. Prod. Res.*, 2004, **18**, 479-484, doi: 10.1080/14786410310001626811.
- 13 Y. He, M. Zheng, Q. Li, Z. Hu, H. Zhu, J. Liu, J. Wang, Y. Xue, H. Li and Y. Zhang, Org. Chem. Front., 2017, 4, 1137-1144, doi: 10.1039/c6qo00847j.
- 14 V. A. Cao, B.-K. Choi, H.-S. Lee, C.-S. Heo and H. J. Shin, J. Nat. Prod., 2021, 84, 1843-1847, doi: 10.1021/acs.jnatprod.1c00288.
- 15 T. B. Schock, K. Huncik, K. R. Beauchesne, T. A. Villareal and P. D. R. Moeller, *Environ. Sci. Technol.*, 2011, **45**, 7503-7509, doi: 10.1021/es201034r.
- 16 M. J. Bertin, P. V. Zimba, H. He and P. D. R. Moeller, Tetrahedron Lett., 2016, 57, 5864-5867, doi: 10.1016/j.tetlet.2016.11.062.
- 17 Suciati, J. A. Fraser, L. K. Lambert, G. K. Pierens, P. V. Bernhardt and M. J. Garson, *J. Nat. Prod.*, 2013, **76**, 1432-1440, doi: 10.1021/np4002114.
- 18 M. J. Garson, W. Hehre, G. K. Pierens and Suciati, *Molecules*, 2017, 22, 521, doi: 10.3390/molecules22040521.
- 19 M. F. Rodriguez Brasco, A. M. Seldes and J. A. Palermo, Org. Lett., 2001, 3, 1415-1417, doi: 10.1021/ol006684x.
- 20 Y. Mogi, K. Inanaga, H. Tokuyama, M. Ihara, Y. Yamaoka, K.-i. Yamada and K. Takasu, Org. Lett., 2019, 21, 3954-3958, doi: 10.1021/acs.orglett.9b01089.
- 21 S. Matsunaga, R. Kishi, K. Otsuka, M. J. Fujita, M. Oikawa and R. Sakai, Org. Lett., 2014, 16, 3090-3093, doi: 10.1021/ol5011888.
- 22 R. Irie, M. Miyahara, S. Nakamura, A. Honda, R. Sakai and M. Oikawa, *J. Nat. Prod.*, 2020, **83**, 2769-2775, doi: 10.1021/acs.jnatprod.0c00761.
- 23 R. Irie, K. Miyako, S. Matsunaga, R. Sakai and M. Oikawa, J. Nat. Prod., 2021, 84, 1203-1209, doi: 10.1021/acs.jnatprod.0c01280.
- 24 X. Li, X.-M. Li, G.-M. Xu, C.-S. Li and B.-G. Wang, *Phytochem. Lett.*, 2014, **7**, 120-123, doi: 10.1016/j.phytol.2013.11.008.
- 25 X. Li, X.-M. Li and B.-G. Wang, Mar. Drugs, 2019, 17, 8, doi: 10.3390/md17010008.
- 26 J. Chen, X. Bai, Y. Hua, H. Zhang and H. Wang, Fitoterapia, 2019, 134, 1-4, doi: 10.1016/j.fitote.2019.01.016.
- 27 J. Gong, C. Chen, S. Mo, J. Liu, W. Wang, Y. Zang, H. Li, C. Chai, H. Zhu, Z. Hu, J. Wang and Y. Zhang, Org. Biomol. Chem., 2019, 17, 5526-5532, doi: 10.1039/c9ob00534j.
- 28 E. Mazzei, M. Iorio, S. I. Maffioli, M. Sosio and S. Donadio, J. Antibiot., 2012, 65, 267-269, doi: 10.1038/ja.2012.10.
- 29 A. R. Tyler, H. Mosaei, S. Morton, P. G. Waddell, C. Wills, W. McFarlane, J. Gray, M. Goodfellow, J. Errington, N. Allenby, N. Zenkin and M. J. Hall, J. Nat. Prod., 2017, 80, 1558-1562, doi: 10.1021/acs.jnatprod.7b00082.
- 30 K. Matsunaga, Y. Shizuri, S. Yamamura, K. Kawai and H. Furukawa, Tetrahedron Lett., 1991, 32, 6883-6884, doi: 10.1016/0040-

4039(91)80433-7.

- 31 F. Song, H. He, R. Ma, X. Xiao, Q. Wei, Q. Wang, Z. Ji, H. Dai, L. Zhang and R. J. Capon, *Tetrahedron Lett.*, 2016, 57, 3851-3852, doi: 10.1016/j.tetlet.2016.07.049.
- 32 E. Julianti, H. Oh, H.-S. Lee, D.-C. Oh, K.-B. Oh and J. Shin, Tetrahedron Lett., 2012, 53, 2885-2886, doi: 10.1016/j.tetlet.2012.03.133.
- 33 K. Banert, *Tetrahedron Lett.*, 2012, **53**, 6443-6445, doi: 10.1016/j.tetlet.2012.09.061.
- 34 L. A. Januar and T. F. Molinski, Org. Lett., 2013, 15, 2370-2373, doi: 10.1021/ol400752s.
- 35 P. J. Schupp, C. Kohlert-Schupp, W. Y. Yoshida and T. K. Hemscheidt, Org. Lett., 2009, 11, 1111-1114, doi: 10.1021/ol8027785.
- 36 S. H. Kim, T. Söhnel and J. Sperry, Org. Lett., 2020, 22, 3495-3498, doi: 10.1021/acs.orglett.0c00953.
- 37 W.-H. Jiao, G.-H. Shi, T.-T. Xu, G.-D. Chen, B.-B. Gu, Z. Wang, S. Peng, S.-P. Wang, J. Li, B.-N. Han, W. Zhang and H.-W. Lin, J. Nat. Prod., 2016, 79, 406-411, doi: 10.1021/acs.jnatprod.5b01079.
- 38 J. Baars, I. Grimm, D. Blunk, J.-M. Neudorfl and H.-G. Schmalz, Angew. Chem., Int. Ed., 2021, 60, 14915-14920, doi: 10.1002/anie.202105733.
- 39 C. Chong, Q. Zhang, J. Ke, H. Zhang, X. Yang, B. Wang, W. Ding and Z. Lu, Angew. Chem., Int. Ed., 2021, 60, 13807-13813, doi: 10.1002/anie.202100541.
- 40 D. M. Kushlan and D. J. Faulkner, J. Nat. Prod., 1991, 54, 1451-1454, doi: 10.1021/np50077a043.
- 41 Z.-J. Xu, D.-X. Tan and Y. Wu, Org. Lett., 2015, 17, 5092-5095, doi: 10.1021/acs.orglett.5b02599.
- 42 C. Jiménez-Romero, J. E. Rode and A. D. Rodríguez, Tetrahedron Asymmetry, 2016, 27, 410-419, doi: 10.1016/j.tetasy.2016.03.011.
- 43 V. Costantino, E. Fattorusso, A. Mangoni and M. Pansini, *Steroids*, 1995, **60**, 768-772, doi: 10.1016/0039-128x(95)00117-9.
- 44 Y. Yaoita, M. Kikuchi and K. Machida, Nat. Prod. Commun., 2015, 10, 881-883, doi: 10.1177/1934578x1501000622.
- 45 Y. Sun, L. Tian, J. Huang, W. Li and Y.-H. Pei, Nat. Prod. Res., 2006, 20, 381-384, doi: 10.1080/14786410600661229.
- 46 Y. Yaoita and K. Machida, Nat. Prod. Commun., 2016, 11, 947-948, doi: 10.1177/1934578x1601100719.
- 47 A. S. R. Anjaneyulu and V. L. Rao, Nat. Prod. Lett., 2001, 15, 13-19, doi: 10.1080/10575630108041252.
- 48 S. C. V. Appa Rao Annam, M. Ankireddy, M. B. Sura, M. G. Ponnapalli, A. V. S. Sarma and J. Basha S, Org. Lett., 2015, 17, 2840-2843, doi: 10.1021/acs.orglett.5b01257.
- 49 W. Lin, G. Brauers, R. Ebel, V. Wray, A. Berg, Sudarsono and P. Proksch, J. Nat. Prod., 2003, 66, 57-61, doi: 10.1021/np020196b.
- 50 K. Kuramochi and K. Tsubaki, J. Nat. Prod., 2015, **78**, 1056-1066, doi: 10.1021/np5010483.
- 51 F. Zhu and Y. Lin, *Chin. Sci. Bull.*, 2006, **51**, 1426-1430, doi: 10.1007/s11434-006-1426-4.
- 52 F. Zhu, G. Chen, J. Wu and J. Pan, Nat. Prod. Res., 2013, 27, 1960-1964, doi: 10.1080/14786419.2013.800980.
- 53 L. R. de Carvalho, M. T. Fujii, N. F. Roque, M. J. Kato and J. H. G. Lago, *Tetrahedron Lett.*, 2003, **44**, 2637-2640, doi: 10.1016/s0040-4039(03)00379-4.
- 54 O. A. Mukhina, H. Koshino, M. T. Crimmins and A. G. Kutateladze, *Tetrahedron Lett.*, 2015, **56**, 4900-4903, doi: 10.1016/j.tetlet.2015.06.078.
- 55 L. R. de Carvalho, M. T. Fujii, N. F. Roque and J. H. G. Lago, *Phytochemistry*, 2006, **67**, 1331-1335, doi: 10.1016/j.phytochem.2006.04.020.
- 56 M. T. Crimmins and C. O. Hughes, Org. Lett., 2012, 14, 2168-2171, doi: 10.1021/ol3007259.
- 57 S. Takahashi, M. Yasuda, T. Nakamura, K. Hatano, K. Matsuoka and H. Koshino, *J. Org. Chem.*, 2014, **79**, 9373-9380, doi: 10.1021/jo501228v.
- 58 Z. Huang, X. Cai, C. Shao, Z. She, X. Xia, Y. Chen, J. Yang, S. Zhou and Y. Lin, *Phytochemistry*, 2008, **69**, 1604-1608, doi: 10.1016/j.phytochem.2008.02.002.
- 59 Y. Izuchi, H. Koshino, Y. Hongo, N. Kanomata and S. Takahashi, Org. Lett., 2011, 13, 3360-3363, doi: 10.1021/ol2011117.
- 60 M. Ishibashi, N. Yamaguchi, T. Sasaki and J. Kobayashi, J. Chem. Soc., Chem. Commun., 1994, 1455-1456, doi: 10.1039/c39940001455.
- 61 Y. Takahashi, T. Kubota, M. Imachi, M. R. Waelchli and J. Kobayashi, J. Antibiot., 2013, 66, 277-279, doi: 10.1038/ja.2012.117.
- 62 S. S. Al-Lihaibi, W. M. Alarif, A. Abdel-Lateff, S.-E. N. Ayyad, A. B. Abdel-Naim, F. F. El-Senduny and F. A. Badria, *Eur. J. Med. Chem.*, 2014, **81**, 314-322, doi: 10.1016/j.ejmech.2014.05.016.
- 63 K. O. Al-Footy, W. M. Alarif, F. Asiri, M. M. Aly and S.-E. N. Ayyad, Med. Chem. Res., 2015, 24, 505-512, doi: 10.1007/s00044-014-1147-1.

- A. Hamed, M. Y. Issa, M. A. Ghani, M. Frese, B. Neumann, H. G. Stammler, N. Sewald and M. Shaaban, *Nat. Prod. Res.*, 2019, 33, 3029-3032, doi: 10.1080/14786419.2018.1512997.
- 65 S.-M. Shen, W.-S. Li, X. Ding, H. Luo, H.-Y. Zhang and Y.-W. Guo, *Bioorg. Med. Chem.*, 2021, **38**, 116139, doi: 10.1016/j.bmc.2021.116139.
- 66 M. F. Elsebai, M. Nazir, S. Kehraus, E. Egereva, K. N. Ioset, L. Marcourt, D. Jeannerat, M. Güetschow, J.-L. Wolfender and G. M. König, Eur. J. Org. Chem., 2012, 2012, 6197-6203, doi: 10.1002/ejoc.201200700.
- 67 Z. Ren, Y. Hao and X. Hu, Org. Lett., 2016, 18, 4958-4961, doi: 10.1021/acs.orglett.6b02424.
- 68 C. M. Saunders and D. J. Tantillo, Mar. Drugs, 2017, 15, 171, doi: 10.3390/md15060171.
- 69 W.-J. Lan, S.-L. Wang and H.-J. Li, Nat. Prod. Commun., 2009, 4, 1193-1196, doi: 10.1177/1934578x0900400907.
- 70 Y.-F. Li, L.-L. He, H.-L. Liu, L.-F. Liang, H.-B. Zhang and Y.-W. Guo, J. Asian Nat. Prod. Res., 2013, **15**, 566-573, doi: 10.1080/10286020.2013.787988.
- 71 M. Varoglu, B. M. Peters and P. Crews, J. Nat. Prod., 1995, 58, 27-36, doi: 10.1021/np50115a003.
- 72 K. W. L. Yong, J. J. De Voss, J. N. A. Hooper and M. J. Garson, J. Nat. Prod., 2011, 74, 194-207, doi: 10.1021/np100620x.
- 73 B. Barnych and J.-M. Vatèle, Org. Lett., 2012, 14, 564-567, doi: 10.1021/ol203185f.
- 74 A. D. Rodríguez and O. M. Cóbar, *Tetrahedron*, 1995, **51**, 6869-6880, doi: 10.1016/0040-4020(95)00339-a.
- 75 C. A. Ospina, A. D. Rodríguez, E. Ortega-Barria and T. L. Capson, J. Nat. Prod., 2003, 66, 357-363, doi: 10.1021/np0204500.
- 76 T. A. Holt, D. S. Reddy, D. B. Huple, L. M. West, A. D. Rodríguez, M. T. Crimmins and A. G. Kutateladze, J. Org. Chem., 2020, 85, 6201-6205, doi: 10.1021/acs.joc.0c00555.
- 77 M. T. Crimmins, M. C. Mans and A. D. Rodríguez, Org. Lett., 2010, 12, 5028-5031, doi: 10.1021/ol102169w.
- 78 C. A. Ospina and A. D. Rodríguez, J. Nat. Prod., 2006, 69, 1721-1727, doi: 10.1021/np060317y.
- 79 A. D. Rodríguez and O. M. Cóbar, Chem. Pharm. Bull., 1995, 43, 1853-1858, doi: 10.1248/cpb.43.1853.
- 80 P. Fu and J. B. MacMillan, J. Nat. Prod., 2015, 78, 548-551, doi: 10.1021/np500929z.
- T. Seitz, P. Fu, F.-L. Haut, L. Adam, M. Habicht, D. Lentz, J. B. MacMillan and M. Christmann, Org. Lett., 2016, 18, 3070-3073, doi: 10.1021/acs.orglett.6b01166.
- 82 I. N'Diaye, G. Guella, I. Mancini and F. Pietra, Tetrahedron Lett., 1996, 37, 3049-3050, doi: 10.1016/0040-4039(96)00466-2.
- 83 F. Miyake, M. Hashimoto, S. Tonsiengsom, K. Yakushijin and D. A. Horne, *Tetrahedron*, 2010, **66**, 4888-4893, doi: 10.1016/j.tet.2010.03.109.
- 84 S. A. Morris and R. J. Andersen, Tetrahedron, 1990, 46, 715-720, doi: 10.1016/s0040-4020(01)81355-7.
- 85 N. E. Golantsov, A. A. Festa, A. V. Varlamov and L. G. Voskressensky, Synthesis, 2017, 49, 2562-2574, doi: 10.1055/s-0036-1588731.
- 86 T. Hertiani, R. Edrada-Ebel, S. Ortlepp, R. W. M. van Soest, N. J. de Voogd, V. Wray, U. Hentschel, S. Kozytska, W. E. G. Mueller and P. Proksch, *Bioorg. Med. Chem.*, 2010, 18, 1297-1311, doi: 10.1016/j.bmc.2009.12.028.
- 87 B. Paulsen, K. A. Fredriksen, D. Petersen, L. Maes, A. Matheeussen, A.-O. Naemi, A. A. Scheie, R. Simm, R. Ma, B. Wan, S. Franzblau and L.-L. Gundersen, *Bioorg. Med. Chem.*, 2019, **27**, 620-629, doi: 10.1016/j.bmc.2019.01.002.
- 88 Y.-Y. Li, M.-Z. Wang, Y.-J. Huang and Y.-M. Shen, *Mycology*, 2010, 1, 254-261, doi: 10.1080/21501203.2010.529583.
- 89 J. McNulty and D. McLeod, Eur. J. Org. Chem., 2017, 2017, 29-33, doi: 10.1002/ejoc.201601172.
- 90 T. P. Wyche, J. S. Piotrowski, Y. Hou, D. Braun, R. Deshpande, S. McIlwain, I. M. Ong, C. L. Myers, I. A. Guzei, W. M. Westler, D. R. Andes and T. S. Bugni, *Angew. Chem., Int. Ed.*, 2014, **53**, 11583-11586, doi: 10.1002/anie.201405990.
- 91 F. Zhang, T. P. Wyche, Y. Zhu, D. R. Braun, J.-X. Yan, S. Chanana, Y. Ge, I. A. Guzei, M. G. Chevrette, C. R. Currie, M. G. Thomas, S. R. Rajski and T. S. Bugni, *Org. Lett.*, 2020, 22, 1275-1279, doi: 10.1021/acs.orglett.9b04535.
- 92 S. P. B. Ovenden and R. J. Capon, J. Nat. Prod., 1999, 62, 1246-1249, doi: 10.1021/np9901027.
- 93 S. Sala, G. L. Nealon, A. N. Sobolev, J. Fromont, O. Gomez and G. R. Flematti, J. Nat. Prod., 2020, 83, 105-110, doi: 10.1021/acs.jnatprod.9b00902.
- 94 D. C. Holland, M. J. Kiefel and A. R. Carroll, J. Org. Chem., 2020, 85, 3490-3496, doi: 10.1021/acs.joc.9b03221.
- 95 P. Neupane, A. A. Salim and R. J. Capon, *Tetrahedron Lett.*, 2020, **61**, 151651, doi: 10.1016/j.tetlet.2020.151651.
- 96 A. R. Díaz-Marrero, I. Brito, J. M. de la Rosa, J. Darias and M. Cueto, *Tetrahedron*, 2008, **64**, 10821-10824, doi: 10.1016/j.tet.2008.09.027.

- 97 N. Huwyler and E. M. Carreira, Angew. Chem., Int. Ed., 2012, 51, 13066-13069, doi: 10.1002/anie.201207203.
- 98 A. G. Kutateladze and D. S. Reddy, J. Org. Chem., 2017, 82, 3368-3381, doi: 10.1021/acs.joc.7b00188.
- 99 C. S. Vairappan, M. Daitoh, M. Suzuki, T. Abe and M. Masuda, *Phytochemistry*, 2001, **58**, 291-297, doi: 10.1016/s0031-9422(01)00243-6.
- 100 R. R. Izac and J. J. Sims, J. Am. Chem. Soc., 1979, 101, 6136-6137, doi: 10.1021/ja00514a054.
- 101 G. M. König and A. D. Wright, J. Nat. Prod., 1997, 60, 967-970, doi: 10.1021/np970181r.
- 102 M. Alam, P. Sharma, A. S. Zektzer, G. E. Martin, X. Ji and D. Van der Helm, *J. Org. Chem.*, 1989, **54**, 1896-1900, doi: 10.1021/jo00269a027.
- 103 D. Friedrich and L. A. Paquette, J. Nat. Prod., 2002, 65, 126-130, doi: 10.1021/np0103822.
- 104 J. S. Clark, L. Delion and L. J. Farrugia, Chem. Eur. J., 2015, **21**, 4772-4780, doi: 10.1002/chem.201406051.
- 105 K. L. McPhail, D. France, S. Cornell-Kennon and W. H. Gerwick, J. Nat. Prod., 2004, 67, 1010-1013, doi: 10.1021/np0400252.
- 106 P. García-Domínguez, I. Lepore, C. Erb, H. Gronemeyer, L. Altucci, R. Álvarez and Á. R. de Lera, *Org. Biomol. Chem.*, 2011, **9**, 6979-6987, doi: 10.1039/c1ob05932g.
- 107 J. Rodríguez, B. M. Peters, L. Kurz, R. C. Schatzman, D. McCarley, L. Lou and P. Crews, J. Am. Chem. Soc., 1993, 115, 10436-10437, doi: 10.1021/ja00075a100.
- 108 J. Rodríguez and P. Crews, Tetrahedron Lett., 1994, 35, 4719-4722, doi: 10.1016/s0040-4039(00)76950-4.
- 109 Z. Meng and A. Fürstner, J. Am. Chem. Soc., 2020, 142, 11703-11708, doi: 10.1021/jacs.0c05347.
- 110 A. D. Rodriguez, J. J. Soto and I. C. Pina, J. Nat. Prod., 1995, 58, 1209-1216, doi: 10.1021/np50122a008.
- 111 A. D. Rodriguez, J. J. Soto and C. L. Barnes, J. Org. Chem., 2000, 65, 7700-7702, doi: 10.1021/jo000996w.
- 112 L. Zhu, Y. Liu, R. Ma and R. Tong, Angew. Chem., Int. Ed., 2015, 54, 627-632, doi: 10.1002/anie.201409618.
- 113 L. Zhu and R. Tong, Synlett, 2015, 26, 1643-1648, doi: 10.1055/s-0034-1380616.
- 114 L. Zhu and R. Tong, Org. Lett., 2015, 17, 1966-1969, doi: 10.1021/acs.orglett.5b00700.
- 115 R. Jadulco, P. Proksch, V. Wray, Sudarsono, A. Berg and U. Gräfe, J. Nat. Prod., 2001, 64, 527-530, doi: 10.1021/np000401s.
- 116 F.-Z. Zhang, X.-M. Li, S.-Q. Yang, L.-H. Meng and B.-G. Wang, J. Nat. Prod., 2019, 82, 1535-1541, doi: 10.1021/acs.jnatprod.8b01091.
- 117 A. Cutignano, G. Nuzzo, D. D'Angelo, E. Borbone, A. Fusco and A. Fontana, *Angew. Chem., Int. Ed.*, 2013, **52**, 9256-9260, doi: 10.1002/anie.201303039.
- 118 B. Seetharamsingh, P. R. Rajamohanan and D. S. Reddy, Org. Lett., 2015, 17, 1652-1655, doi: 10.1021/acs.orglett.5b00345.
- 119 S. Das, T. K. Kuilya and R. K. Goswami, J. Org. Chem., 2015, 80, 6467-6489, doi: 10.1021/acs.joc.5b00972.
- 120 K. Nageswara Rao, K. Kumar and S. Ghosh, Eur. J. Org. Chem., 2018, 2018, 398-412, doi: 10.1002/ejoc.201701562.
- 121 H. Li, C. L. M. Gilchrist, H. J. Lacey, A. Crombie, D. Vuong, J. I. Pitt, E. Lacey, Y.-H. Chooi and A. M. Piggott, *Org. Lett.*, 2019, **21**, 1287-1291, doi: 10.1021/acs.orglett.8b04042.
- 122 J. Li, M. Chen, X. Hao, S. Li, F. Li, L. Yu, C. Xiao and M. Gan, Org. Lett., 2020, 22, 98-101, doi: 10.1021/acs.orglett.9b04008.
- 123 L. Garrido, E. Zubía, M. J. Ortega and J. Salvá, J. Org. Chem., 2003, 68, 293-299, doi: 10.1021/jo020487p.
- 124 M. Matveenko, G. Liang, E. M. W. Lauterwasser, E. Zubía and D. Trauner, J. Am. Chem. Soc., 2012, **134**, 9291-9295, doi: 10.1021/ja301326k.
- 125 Y. Momoi, K.-i. Okuyama, H. Toya, K. Sugimoto, K. Okano and H. Tokuyama, *Angew. Chem., Int. Ed.*, 2014, **53**, 13215-13219, doi: 10.1002/anie.201407686.
- 126 A. J. Blackman and R. D. Green, Aust. J. Chem., 1987, 40, 1655-1662, doi: 10.1071/ch9871655.
- 127 A. R. Carroll, S. Duffy, M. Sykes and V. M. Avery, Org. Biomol. Chem., 2011, 9, 604-609, doi: 10.1039/c0ob00538j.
- 128 F. A. Khan and S. Ahmad, J. Org. Chem., 2012, 77, 2389-2397, doi: 10.1021/jo3000173.
- 129 S. Ahmad, S. Choudhury and F. A. Khan, Tetrahedron, 2015, 71, 4192-4202, doi: 10.1016/j.tet.2015.04.091.
- 130 S. Rubnov, C. Chevallier, O. Thoison, C. Debitus, O. Laprevote, D. Guénard and T. Sévenet, *Nat. Prod. Res.*, 2005, **19**, 75-79, doi: 10.1080/1478641042000199851.
- 131 M. I. Mitova, G. Lang, J. Wiese and J. F. Imhoff, J. Nat. Prod., 2008, 71, 824-827, doi: 10.1021/np800032a.
- 132 Z. Yang, X. Jin, M. Guaciaro, B. F. Molino, U. Mocek, R. Reategui, J. Rhea and T. Morley, *Org. Lett.*, 2011, **13**, 5436-5439, doi: 10.1021/ol202005u.

- 133 J.-Y. Chen, C.-Y. Huang, Y.-S. Lin, T.-L. Hwang, W.-L. Wang, S.-F. Chiou and J.-H. Sheu, J. Nat. Prod., 2016, **79**, 2315-2323, doi: 10.1021/acs.jnatprod.6b00452.
- 134 M. Sun, X. Zhang, H. Hao, W. Li and C. Lu, J. Nat. Prod., 2015, 78, 2123-2127, doi: 10.1021/acs.jnatprod.5b00031.
- 135 T. Kim, S.-A. Lee, T. Noh, P. Choi, S.-J. Choi, B. G. Song, Y. Kim, Y.-T. Park, G. Huh, Y.-J. Kim and J. Ham, *J. Nat. Prod.*, 2019, **82**, 1325-1330, doi: 10.1021/acs.jnatprod.9b00072.
- 136 W.-T. Li, D. Luo, J.-N. Huang, L.-L. Wang, F.-G. Zhang, T. Xi, J.-M. Liao and Y.-Y. Lu, *Nat. Prod. Res.*, 2018, **32**, 662-667, doi: 10.1080/14786419.2017.1335730.
- 137 K. Banert and D. J. Tantillo, Nat. Prod. Res., 2019, 33, 3011-3015, doi: 10.1080/14786419.2018.1509330.
- 138 K. Watanabe, Y. Tsuda, M. Hamada, M. Omori, G. Mori, K. Iguchi, H. Naoki, T. Fujita and R. W. M. Van Soest, *J. Nat. Prod.*, 2005, 68, 1001-1005, doi: 10.1021/np040233u.
- 139 P. Gangadhar, S. Ramakrishna, P. Venkateswarlu and P. Srihari, Beilstein J. Org. Chem., 2018, 14, 2313-2320, doi: 10.3762/bjoc.14.206.
- 140 J. Wu, Q. Xiao, S. Zhang, X. Li, Z. Xiao, H. Ding and Q. Li, Tetrahedron, 2005, 61, 8382-8389, doi: 10.1016/j.tet.2005.06.099.
- 141 Z.-F. Zhou, L.-Y. Kong, T. Kurtán, H.-L. Liu, A. Mándi, J. Li, Y.-C. Gu and Y.-W. Guo, Planta Med., 2014, 80, 949-954, doi: 10.1055/s-0034-1382840.
- 142 J. Wang, A. N. Pearce, S. T. S. Chan, R. B. Taylor, M. J. Page, A. Valentin, M.-L. Bourguet-Kondracki, J. P. Dalton, S. Wiles and B. R. Copp, J. Nat. Prod., 2016, **79**, 607-610, doi: 10.1021/acs.jnatprod.5b00770.
- 143 D.-Y. Sun, G.-Y. Han, J.-X. Gong, B. Nay, X.-W. Li and Y.-W. Guo, Org. Lett., 2017, 19, 714-717, doi: 10.1021/acs.orglett.6b03892.
- 144 S.-Y. Cheng, S.-K. Wang, M.-K. Hsieh and C.-Y. Duh, Int. J. Mol. Sci., 2015, 16, 6140-6152, doi: 10.3390/ijms16036140.
- 145 G. Li, H. Li, Q. Zhang, M. Yang, Y.-C. Gu, L.-F. Liang, W. Tang and Y.-W. Guo, *J. Org. Chem.*, 2019, **84**, 5091-5098, doi: 10.1021/acs.joc.9b00030.
- 146 T. Yamada, M. Iritani, K. Minoura, K. Kawai and A. Numata, Org. Biomol. Chem., 2004, 2, 2131-2135, doi: 10.1039/B404459B.
- 147 T. Yamada, M. Doi, A. Miura, W. Harada, M. Hiramura, K. Minoura, R. Tanaka and A. Numata, *J. Antibiot.*, 2005, **58**, 185-191, doi: 10.1038/ja.2005.21.
- 148 H. P. Kalmode, K. L. Handore, R. Rajput, S. R. Shaikh, R. G. Gonnade, K. A. Kulkarni and D. S. Reddy, *Org. Lett.*, 2018, **20**, 7003-7006, doi: 10.1021/acs.orglett.8b02838.
- 149 P. R. Athawale, H. P. Kalmode, Z. Motiwala, K. A. Kulkarni and D. S. Reddy, *Org. Lett.*, 2020, **22**, 3104-3109, doi: 10.1021/acs.orglett.0c00857.
- 150 H. Koshino, H. Satoh, T. Yamada and Y. Esumi, Tetrahedron Lett., 2006, 47, 4623-4626, doi: 10.1016/j.tetlet.2006.04.139.
- 151 E. Fahy, T. F. Molinski, M. K. Harper, B. W. Sullivan, D. J. Faulkner, L. Parkanyi and J. Clardy, *Tetrahedron Lett.*, 1988, **29**, 3427-3428, doi: 10.1016/0040-4039(88)85180-3.
- 152 T. S. McDermott, A. Mortlock and C. H. Heathcock, J. Org. Chem., 1996, 61, 700-709, doi: 10.1021/jo951647i.
- 153 H.-B. Liu, G. H. Imler, K. K. Baldridge, R. D. O'Connor, J. S. Siegel, J. R. Deschamps and C. A. Bewley, J. Am. Chem. Soc., 2020, 142, 2755-2759, doi: 10.1021/jacs.9b12926.
- 154 A. Rudi, R. Afanii, L. G. Gravalos, M. Aknin, E. Gaydou, J. Vacelet and Y. Kashman, J. Nat. Prod., 2003, **66**, 682-685, doi: 10.1021/np020589a.
- 155 M. Suzuki, Y. Takahashi, Y. Mitome, T. Itoh, T. Abe and M. Masuda, *Phytochemistry*, 2002, **60**, 861-867, doi: 10.1016/s0031-9422(02)00151-6.
- 156 W. Jeong, M. J. Kim, H. Kim, S. Kim, D. Kim and K. J. Shin, Angew. Chem., Int. Ed., 2010, 49, 752-756, doi: 10.1002/anie.200905826.
- 157 A. R. Pereira, Z. Cao, N. Engene, I. E. Soria-Mercado, T. F. Murray and W. H. Gerwick, *Org. Lett.*, 2010, **12**, 4490-4493, doi: 10.1021/ol101752n.
- 158 R. Tello-Aburto, E. M. Johnson, C. K. Valdez and W. A. Maio, Org. Lett., 2012, 14, 2150-2153, doi: 10.1021/ol300673m.
- 159 R. Tello-Aburto, T. D. Newar and W. A. Maio, J. Org. Chem., 2012, 77, 6271-6289, doi: 10.1021/jo301121f.
- 160 A. D. Wadsworth, D. P. Furkert, J. Sperry and M. A. Brimble, Org. Lett., 2012, 14, 5374-5377, doi: 10.1021/ol3025956.
- 161 T. S. Bugni, J. E. Janso, R. T. Williamson, X. Feng, V. S. Bernan, M. Greenstein, G. T. Carter, W. M. Maiese and C. M. Ireland, *J. Nat. Prod.*, 2004, **67**, 1396-1399, doi: 10.1021/np049973t.
- 162 A. R. Burns, G. D. McAllister, S. E. Shanahan and R. J. K. Taylor, Angew. Chem., Int. Ed., 2010, 49, 5574-5577, doi:

10.1002/anie.201002416.

- 163 W. M. Abdel-Mageed, R. Ebel, F. A. Valeriote and M. Jaspars, Tetrahedron, 2010, 66, 2855-2862, doi: 10.1016/j.tet.2010.02.041.
- 164 H. S. S. Chan, A. L. Thompson, K. E. Christensen and J. W. Burton, *Chem. Sci.*, 2020, 11592-11600, doi: 10.1039/d0sc04120c.
- 165 L. T. Tan, B. L. Márquez and W. H. Gerwick, J. Nat. Prod., 2002, 65, 925-928, doi: 10.1021/np010526c.
- 166 A. ElMarrouni, R. Lebeuf, J. Gebauer, M. Heras, S. Arseniyadis and J. Cossy, Org. Lett., 2012, 14, 314-317, doi: 10.1021/ol203064r.
- 167 X.-H. Yan, M. Gavagnin, G. Cimino and Y.-W. Guo, Tetrahedron Lett., 2007, 48, 5313-5316, doi: 10.1016/j.tetlet.2007.05.096.
- 168 X.-H. Yan, Z.-Y. Li and Y.-W. Guo, Helv. Chim. Acta, 2007, 90, 1574-1580, doi: 10.1002/hlca.200790164.
- 169 H. Takamura, T. Kikuchi, N. Endo, Y. Fukuda and I. Kadota, Org. Lett., 2016, 18, 2110-2113, doi: 10.1021/acs.orglett.6b00737.
- 170 H. Takamura, T. Kikuchi, K. Iwamoto, E. Nakao, N. Harada, T. Otsu, N. Endo, Y. Fukuda, O. Ohno, K. Suenaga, Y.-W. Guo and I. Kadota, J. Org. Chem., 2018, 83, 11028-11056, doi: 10.1021/acs.joc.8b01634.
- 171 M. Zhang, K. Long, K. Ma, X. Huang and H. Wu, J. Nat. Prod., 1995, 58, 414-418, doi: 10.1021/np50117a010.
- 172 L.-F. Liang, T. Kurtán, A. Mándi, L.-X. Gao, J. Li, W. Zhang and Y.-W. Guo, *Eur. J. Org. Chem.*, 2014, **2014**, 1841-1847, doi: 10.1002/ejoc.201301683.
- 173 L.-F. Liang, L.-F. Lan, O. Taglialatela-Scafati and Y.-W. Guo, Tetrahedron, 2013, 69, 7381-7386, doi: 10.1016/j.tet.2013.06.068.
- 174 L.-F. Liang, T. Kurtán, A. Mándi, L.-G. Yao, J. Li, L.-F. Lan and Y.-W. Guo, *Tetrahedron*, 2018, **74**, 1933-1941, doi: 10.1016/j.tet.2018.02.059.
- 175 R. Jia, T. Kurtán, A. Mándi, X.-H. Yan, W. Zhang and Y.-W. Guo, J. Org. Chem., 2013, 78, 3113-3119, doi: 10.1021/jo400069n.
- 176 M.-J. Xu, X.-J. Liu, Y.-L. Zhao, D. Liu, Z.-H. Xu, X.-M. Lang, P. Ao, W.-H. Lin, S.-L. Yang, Z.-G. Zhang and J. Xu, *Mar. Drugs*, 2012, **10**, 639-654, doi: 10.3390/md10030639.
- 177 Z.-Y. You, Y.-H. Wang, Z.-G. Zhang, M.-J. Xu, S.-J. Xie, T.-S. Han, L. Feng, X.-G. Li and J. Xu, *Mar. Drugs*, 2013, **11**, 4035-4049, doi: 10.3390/md11104035.
- 178 X. Jiao, Y. Yao, B. Yang, X. Liu, X. Li, H. Yang, L. Li, J. Xu, M. Xu and P. Xie, *Org. Biomol. Chem.*, 2016, **14**, 1805-1813, doi: 10.1039/c5ob02476e.
- 179 Y.-Y. Yao, X.-Y. Liu, X.-Y. Li, H.-G. Yang, L. Li, X.-Z. Jiao and P. Xie, *J. Asian Nat. Prod. Res.*, 2016, **18**, 976-987, doi: 10.1080/10286020.2016.1188808.
- 180 X.-D. Li, W. Ding, F.-P. Miao and N.-Y. Ji, Magn. Reson. Chem., 2012, 50, 174-177, doi: 10.1002/mrc.2870.
- 181 X.-Q. Yu, C.-S. Jiang, Y. Zhang, P. Sun, T. Kurtán, A. Mándi, X.-L. Li, L.-G. Yao, A.-H. Liu, B. Wang, Y.-W. Guo and S.-C. Mao, *Phytochemistry*, 2017, **136**, 81-93, doi: 10.1016/j.phytochem.2017.01.007.
- 182 C. S. Vairappan, M. Suzuki, T. Abe and M. Masuda, Phytochemistry, 2001, 58, 517-523, doi: 10.1016/s0031-9422(01)00260-6.
- 183 J. Kimura, N. Kamada and Y. Tsujimoto, Bull. Chem. Soc. Jpn., 1999, 72, 289-292, doi: 10.1246/bcsj.72.289.
- 184 D. E. Barnekow, J. H. Cardellina, II, A. S. Zektzer and G. E. Martin, J. Am. Chem. Soc., 1989, 111, 3511-3517, doi: 10.1021/ja00192a004.
- 185 Y. Peng, S.-J. Ni, J. Li and M.-Y. Li, Phytochem. Lett., 2017, 21, 38-41, doi: 10.1016/j.phytol.2017.05.018.
- 186 Y. Peng and M.-Y. Li, Nat. Prod. Res. Dev., 2016, 28, 1870-1874.
- 187 X. Zhang, W. Li, L. Shen and J. Wu, Fitoterapia, 2018, 124, 1-7, doi: 10.1016/j.fitote.2017.09.019.
- 188 Y. Zhang, Z. Deng, T. Gao, P. Proksch and W. Lin, Phytochemistry, 2005, 66, 1465-1471, doi: 10.1016/j.phytochem.2005.04.018.
- 189 D. A. Dias and S. Urban, Phytochemistry, 2011, 72, 2081-2089, doi: 10.1016/j.phytochem.2011.06.012.
- 190 S. Lee, M. Hoshino, M. Fujita and S. Urban, Chem. Sci., 2017, 8, 1547-1550, doi: 10.1039/c6sc04288k.
- 191 W. Guo, D. Li, J. Peng, T. Zhu, Q. Gu and D. Li, J. Nat. Prod., 2015, 78, 306-310, doi: 10.1021/np500586r.
- 192 M. Cheng, P. Li, Y. Jiang, X. Tang, W. Zhang, Q. Wang and G. Li, J. Nat. Prod., 2021, 84, 1345-1352, doi: 10.1021/acs.jnatprod.1c00082.
- 193 J. Wu, S. Zhang, T. Bruhn, Q. Xiao, H. Ding and G. Bringmann, Chem. Eur. J., 2008, 14, 1129-1144, doi: 10.1002/chem.200700663.
- 194 A. W. Schuppe, Y. Zhao, Y. Liu and T. R. Newhouse, J. Am. Chem. Soc., 2019, 9191-9196, doi: 10.1021/jacs.9b04508.
- 195 Y. Liu, T. A. Holt, A. Kutateladze and T. R. Newhouse, Chirality, 2020, 32, 515-523, doi: 10.1002/chir.23189.
- 196 K. Ofuji, M. Satake, T. McMahon, J. Silke, K. J. James, H. Naoki, Y. Oshima and T. Yasumoto, *Nat. Toxins*, 1999, **7**, 99-102, doi: 10.1002/(sici)1522-7189(199905/06)7:3<99::aid-nt46>3.0.co;2-l.
- 197 K. C. Nicolaou, M. O. Frederick, G. Petrovic, K. P. Cole and E. Z. Loizidou, *Angew. Chem., Int. Ed.*, 2006, **45**, 2609-2615, doi: 10.1002/anie.200600295.

- 198 N. T. Kenton, D. Adu-Ampratwum, A. A. Okumu, Z. Zhang, Y. Chen, S. Nguyen, J. Xu, Y. Ding, P. McCarron, J. Kilcoyne, F. Rise, A. L. Wilkins, C. O. Miles and C. J. Forsyth, *Angew. Chem., Int. Ed.*, 2018, **57**, 805-809, doi: 10.1002/anie.201711006.
- 199 N. T. Kenton, D. Adu-Ampratwum, A. A. Okumu, P. McCarron, J. Kilcoyne, F. Rise, A. L. Wilkins, C. O. Miles and C. J. Forsyth, Angew. Chem., Int. Ed., 2018, 57, 810-813, doi: 10.1002/anie.201711008.
- 200 S. U. Lee, Y. Asami, D. Lee, J.-H. Jang, J. S. Ahn and H. Oh, J. Nat. Prod., 2011, 74, 1284-1287, doi: 10.1021/np100880b.
- 201 P. Lorenzo, R. Álvarez and Á. R. de Lera, Eur. J. Org. Chem., 2014, 2014, 2557-2564, doi: 10.1002/ejoc.201400029.
- 202 X. Li, Y. Yao, Y. Zheng, I. Sattler and W. Lin, Arch. Pharmacal Res., 2007, 30, 812-815, doi: 10.1007/bf02978829.
- 203 J. Wang and R. Tong, J. Org. Chem., 2016, **81**, 4325-4339, doi: 10.1021/acs.joc.6b00788.
- 204 J. Wang and R. Tong, Org. Chem. Front., 2017, 4, 140-146, doi: 10.1039/c6qo00556j.
- 205 W.-L. Mei, B. Zheng, Y.-X. Zhao, H.-M. Zhong, X.-L. W. Chen, Y.-B. Zeng, W.-H. Dong, J.-L. Huang, P. Proksch and H.-F. Dai, *Mar. Drugs*, 2012, **10**, 1993-2001, doi: 10.3390/md10091993.
- 206 T. Kobayashi, I. Takizawa, A. Shinobe, Y. Kawamoto, H. Abe and H. Ito, *Org. Lett.*, 2019, **21**, 3008-3012, doi: 10.1021/acs.orglett.9b00486.
- 207 A. S. R. Anjaneyulu, P. M. Gowri, M. J. R. V. Venugopal, P. Sarada, M. V. R. K. Murthy, G. V. Rao, P. S. N. Murthy, C. V. Rao and G. Kumar, *J. Indian Chem. Soc.*, 1999, **76**, 651-659.
- 208 C. He, J. Xuan, P. Rao, P.-P. Xie, X. Hong, X. Lin and H. Ding, Angew. Chem., Int. Ed., 2019, 58, 5100-5104, doi: 10.1002/anie.201900782.
- 209 A. Trianto, I. Hermawan, N. J. de Voogd and J. Tanaka, Chem. Pharm. Bull., 2011, 59, 1311-1313, doi: 10.1248/cpb.59.1311.
- 210 C. Poock and M. Kalesse, Chem. Eur. J., 2021, 27, 1615-1619, doi: 10.1002/chem.202004847.
- 211 N. Tsuji and K. Nagashima, Tetrahedron, 1970, 26, 5719-5729, doi: 10.1016/0040-4020(70)80008-4.
- 212 Y. Dong, W. Ding, C. Sun, X. Ji, C. Ling, Z. Zhou, Z. Chen, X. Chen and J. Ju, *Chem. Biodiversity*, 2020, **17**, e2000057, doi: 10.1002/cbdv.202000057.
- 213 J. P. Torres, Z. Lin, D. S. Fenton, L. U. Leavitt, C. Niu, P.-Y. Lam, J. M. Robes, R. T. Peterson, G. P. Concepcion, M. G. Haygood, B. M. Olivera and E. W. Schmidt, J. Nat. Prod., 2020, 83, 1249-1257, doi: 10.1021/acs.jnatprod.0c00038.
- 214 F. Han, G. Liu, X. Zhang, Y. Ding, L. Wang, Y. Wu, Y. Chen and Q. Zhang, *Org. Lett.*, 2021, **23**, 4976-4980, doi: 10.1021/acs.orglett.1c01382.
- 215 W. P. Frankmölle, G. Knübel, R. E. Moore and G. M. L. Patterson, J. Antibiot., 1992, 45, 1458-1466, doi: 10.7164/antibiotics.45.1458.
- 216 I. Bonnard, M. Rolland, C. Francisco and B. Banaigs, Lett. Pept. Sci., 1997, 4, 289-292, doi: 10.1007/bf02442891.
- 217 F. Boyaud, Z. Mahiout, C. Lenoir, S. Tang, J. Wdzieczak-Bakala, A. Witczak, I. Bonnard, B. Banaigs, T. Ye and N. Inguimbert, *Org. Lett.*, 2013, **15**, 3898-3901, doi: 10.1021/ol401645m.
- 218 P. Pruksakorn, M. Arai, N. Kotoku, C. Vilchèze, A. D. Baughn, P. Moodley, W. R. Jacobs, Jr. and M. Kobayashi, *Bioorg. Med. Chem. Lett.*, 2010, **20**, 3658-3663, doi: 10.1016/j.bmcl.2010.04.100.
- 219 I. Kavianinia, L. Kunalingam, P. W. R. Harris, G. M. Cook and M. A. Brimble, *Org. Lett.*, 2016, **18**, 3878-3881, doi: 10.1021/acs.orglett.6b01886.
- 220 R. Talpir, A. Rudi, Y. Kashman, Y. Loya and A. Hizi, Tetrahedron, 1994, 50, 4179-4184, doi: 10.1016/s0040-4020(01)86712-0.
- 221 S. A. Snyder, D. S. Treitler and A. P. Brucks, J. Am. Chem. Soc., 2010, 132, 14303-14314, doi: 10.1021/ja106813s.
- M. J. Balunas, M. F. Grosso, F. A. Villa, N. Engene, K. L. McPhail, K. Tidgewell, L. M. Pineda, L. Gerwick, C. Spadafora, D. E. Kyle and W. H. Gerwick, *Org. Lett.*, 2012, 14, 3878-3881, doi: 10.1021/ol301607q.
- 223 V. M. T. Carneiro, C. M. Avila, M. J. Balunas, W. H. Gerwick and R. A. Pilli, J. Org. Chem., 2014, 79, 630-642, doi: 10.1021/jo402339y.
- 224 J. Arunpanichlert, V. Rukachaisirikul, Y. Sukpondma, S. Phongpaichit, O. Supaphon and J. Sakayaroj, *Arch. Pharmacal Res.*, 2011, **34**, 1633-1637, doi: 10.1007/s12272-011-1007-1.
- 225 P. Saetang, V. Rukachaisirikul, S. Phongpaichit, J. Sakayaroj, X. Shi, J. Chen and X. Shen, *Tetrahedron*, 2016, **72**, 6421-6427, doi: 10.1016/j.tet.2016.08.048.
- 226 J. Gaddam, G. S. Reddy, K. Marumudi, A. C. Kunwar, J. S. Yadav and D. K. Mohapatra, Org. Biomol. Chem., 2019, 17, 5601-5614, doi: 10.1039/c9ob00838a.
- 227 M. Akakabe, K. Kumagai, M. Tsuda, Y. Konishi, A. Tominaga, M. Tsuda, E. Fukushi and J. Kawabata, *Tetrahedron Lett.*, 2014, **55**, 3491-3494, doi: 10.1016/j.tetlet.2014.04.086.

- 228 M. Kanto and M. Sasaki, Org. Lett., 2016, 18, 112-115, doi: 10.1021/acs.orglett.5b03346.
- 229 M. Kanto, S. Sato, M. Tsuda and M. Sasaki, J. Org. Chem., 2016, 81, 9105-9121, doi: 10.1021/acs.joc.6b01700.
- 230 B. Sullivan, P. Djura, D. E. McIntyre and D. J. Faulkner, Tetrahedron, 1981, 37, 979-982, doi: 10.1016/s0040-4020(01)97672-0.
- 231 B. W. Sullivan, D. J. Faulkner, G. K. Matsumoto, C. H. He and J. Clardy, J. Org. Chem., 1986, 51, 4568-4573, doi: 10.1021/jo00374a015.
- 232 A. W. Markwell-Heys, K. K. W. Kuan and J. H. George, Org. Lett., 2015, 17, 4228-4231, doi: 10.1021/acs.orglett.5b01973.
- 233 A. Qureshi and D. J. Faulkner, J. Nat. Prod., 2000, 63, 841-842, doi: 10.1021/np9905665.
- 234 A.-Y. Shin, H.-S. Lee, Y.-J. Lee, J. S. Lee, A. Son, C. Choi and J. Lee, Mar. Drugs, 2020, 18, 607, doi: 10.3390/md18120607.
- 235 J. Peng, A. R. Place, W. Yoshida, C. Anklin and M. T. Hamann, J. Am. Chem. Soc., 2010, 132, 3277-3279, doi: 10.1021/ja9091853.
- 236 A. L. Waters, J. Oh, A. R. Place and M. T. Hamann, Angew. Chem., Int. Ed., 2015, 54, 15705-15710, doi: 10.1002/anie.201507418.
- 237 D. S. Dalisay, B. I. Morinaka, C. K. Skepper and T. F. Molinski, J. Am. Chem. Soc., 2009, 131, 7552-7553, doi: 10.1021/ja9024929.
- 238 Q. Xiao, K. Young and A. Zakarian, J. Am. Chem. Soc., 2015, 137, 5907-5910, doi: 10.1021/jacs.5b03531.
- 239 M. Suzuki, S. Nakano, Y. Takahashi, T. Abe and M. Masuda, *Phytochemistry*, 1999, **51**, 657-662, doi: 10.1016/s0031-9422(99)00102-8.
- 240 I. Shin, D. Lee and H. Kim, Org. Lett., 2016, 18, 4420-4423, doi: 10.1021/acs.orglett.6b02239.
- 241 J.-H. Sheu, A. F. Ahmed, R.-T. Shiue, C.-F. Dai and Y.-H. Kuo, J. Nat. Prod., 2002, 65, 1904-1908, doi: 10.1021/np020280r.
- 242 A. Saitman, P. Rulliere, S. D. E. Sullivan and E. A. Theodorakis, Org. Lett., 2011, 13, 5854-5857, doi: 10.1021/ol202476j.
- 243 S.-T. Lin, S.-K. Wang, S.-Y. Cheng and C.-Y. Duh, Org. Lett., 2009, 11, 3012-3014, doi: 10.1021/ol901070e.
- 244 F.-Z. Yin, L.-G. Yao, Z.-Y. Zhang, J.-R. Wang, H. Wang and Y.-W. Guo, Tetrahedron, 2021, 90, 132204, doi: 10.1016/j.tet.2021.132204.
- 245 C.-Y. Huang, P.-J. Sung, C. Uvarani, J.-H. Su, M.-C. Lu, T.-L. Hwang, C.-F. Dai, S.-L. Wu and J.-H. Sheu, *Sci. Rep.*, 2015, **5**, 15624, doi: 10.1038/srep15624.
- 246 P. Sun, F.-Y. Cai, G. Lauro, H. Tang, L. Su, H.-L. Wang, H. H. Li, A. Mándi, T. Kurtán, R. Riccio, G. Bifulco and W. Zhang, J. Nat. Prod., 2019, 82, 1264-1273, doi: 10.1021/acs.jnatprod.8b01037.
- 247 S. Liu, H. Dai, G. Makhloufi, C. Heering, C. Janiak, R. Hartmann, A. Mándi, T. Kurtán, W. E. G. Mueller, M. U. Kassack, W. Lin, Z. Liu and P. Proksch, J. Nat. Prod., 2016, **79**, 2332-2340, doi: 10.1021/acs.jnatprod.6b00473.
- 248 D. Paul, S. Saha and R. K. Goswami, Org. Lett., 2018, 20, 4606-4609, doi: 10.1021/acs.orglett.8b01894.
- 249 J. Sikorska, A. M. Hau, C. Anklin, S. Parker-Nance, M. T. Davies-Coleman, J. E. Ishmael and K. L. McPhail, J. Org. Chem., 2012, 77, 6066-6075, doi: 10.1021/jo3008622.
- 250 H. Lei, J. Yan, J. Yu, Y. Liu, Z. Wang, Z. Xu and T. Ye, Angew. Chem., Int. Ed., 2014, 53, 6533-6537, doi: 10.1002/anie.201403542.
- 251 J. Willwacher and A. Füerstner, Angew. Chem., Int. Ed., 2014, 53, 4217-4221, doi: 10.1002/anie.201400605.
- 252 J. Willwacher, B. Heggen, C. Wirtz, W. Thiel and A. Füerstner, Chem. Eur. J., 2015, 21, 10416-10430, doi: 10.1002/chem.201501491.
- 253 K. M. Snyder, J. Sikorska, T. Ye, L. Fang, W. Su, R. G. Carter, K. L. McPhail and P. H.-Y. Cheong, Org. Biomol. Chem., 2016, 14, 5826-5831, doi: 10.1039/c6ob00707d.
- 254 M. R. Rao and D. J. Faulkner, J. Nat. Prod., 2002, 65, 386-388, doi: 10.1021/np010495l.
- 255 J. B. Son, S. N. Kim, N. Y. Kim, M.-h. Hwang, W. Lee and D. H. Lee, *Bull. Korean Chem. Soc.*, 2010, **31**, 653-663, doi: 10.5012/bkcs.2010.31.03.653.
- 256 H. Luesch, W. Y. Yoshida, G. G. Harrigan, J. P. Doom, R. E. Moore and V. J. Paul, *J. Nat. Prod.*, 2002, **65**, 1945-1948, doi: 10.1021/np0202879.
- 257 H. Fuwa, Y. Okuaki, N. Yamagata and M. Sasaki, Angew. Chem., Int. Ed., 2015, 54, 868-873, doi: 10.1002/anie.201409629.
- 258 H. Fuwa, Strategies Tactics Org. Synth., 2016, 12, 143-168, doi: 10.1016/b978-0-08-100756-3.00005-4.
- 259 S. Matthew, L. A. Salvador, P. J. Schupp, V. J. Paul and H. Luesch, J. Nat. Prod., 2010, 73, 1544-1552, doi: 10.1021/np1004032.
- 260 C.-F. Chang, E. Stefan and R. E. Taylor, Chem. Eur. J., 2015, 21, 10681-10686, doi: 10.1002/chem.201502132.
- 261 K. Kumagai, M. Tsuda, A. Masuda, E. Fukushi and J. Kawabata, *Heterocycles*, 2015, 91, 265-274, doi: 10.3987/com-14-13132.
- 262 K. Sakamoto, A. Hakamata, M. Tsuda and H. Fuwa, Angew. Chem., Int. Ed., 2018, 57, 3801-3805, doi: 10.1002/anie.201800507.
- 263 K. Sakamoto, A. Hakamata, A. Iwasaki, K. Suenaga, M. Tsuda and H. Fuwa, *Chem. Eur. J.*, 2019, **25**, 8528-8542, doi: 10.1002/chem.201900813.
- 264 M. T. Jamison. Mangrolide A, a novel marine derived polyketide with selective antibiotic activity. The University of Texas

Southwestern Medical Center (US), May 2013.

- 265 H. Hattori, L. V. Hoff and K. Gademann, Org. Lett., 2019, 21, 3456-3459, doi: 10.1021/acs.orglett.9b01256.
- 266 G. J. Florence and J. Wlochal, Chem. Eur. J., 2012, 18, 14250-14254, doi: 10.1002/chem.201203067.
- 267 A. A. Sayyad, K. Kaim and K. P. Kaliappan, Org. Biomol. Chem., 2020, 18, 5937-5950, doi: 10.1039/d0ob01140a.
- 268 K. Vaithegi, A. B. Pawar and K. R. Prasad, Tetrahedron, 2021, 77, 131768, doi: 10.1016/j.tet.2020.131768.
- 269 A. Tripathi, M. M. Schofield, G. E. Chlipala, P. J. Schultz, I. Yim, S. A. Newmister, T. D. Nusca, J. B. Scaglione, P. C. Hanna, G. Tamayo-Castillo and D. H. Sherman, J. Am. Chem. Soc., 2014, 136, 1579-1586, doi: 10.1021/ja4115924.
- 270 J. Wu, P. Lorenzo, S. Zhong, M. Ali, C. P. Butts, E. L. Myers and V. K. Aggarwal, Nature, 2017, 547, 436-440, doi: 10.1038/nature23265.
- 271 S. Guchhait, S. Chatterjee, R. S. Ampapathi and R. K. Goswami, J. Org. Chem., 2017, 82, 2414-2435, doi: 10.1021/acs.joc.6b02838.
- 272 S. Paladugu, P. S. Mainkar and S. Chandrasekhar, *Tetrahedron Lett.*, 2017, **58**, 2784-2787, doi: 10.1016/j.tetlet.2017.06.011.
- 273 S. Sengupta, M. Bae, D.-C. Oh, U. Dash, H. J. Kim, W. Y. Song, I. Shin and T. Sim, J. Org. Chem., 2017, 82, 12947-12966, doi: 10.1021/acs.joc.7b01719.
- 274 M. Murata, S. Matsuoka, N. Matsumori, G. K. Paul and K. Tachibana, J. Am. Chem. Soc., 1999, 121, 870-871, doi: 10.1021/ja983655x.
- 275 M. Ebine, M. Kanemoto, Y. Manabe, Y. Konno, K. Sakai, N. Matsumori, M. Murata and T. Oishi, Org. Lett., 2013, 15, 2846-2849, doi: 10.1021/ol401176a.
- 276 Y. Wakamiya, M. Ebine, M. Murayama, H. Omizu, N. Matsumori, M. Murata and T. Oishi, *Angew. Chem., Int. Ed.*, 2018, **57**, 6060-6064, doi: 10.1002/anie.201712167.
- 277 Y. Wakamiya, M. Ebine, N. Matsumori and T. Oishi, J. Am. Chem. Soc., 2020, 142, 3472-3478, doi: 10.1021/jacs.9b11789.
- 278 J. Rodriguez, R. M. Nieto, M. Blanco, F. A. Valeriote, C. Jiménez and P. Crews, Org. Lett., 2014, 16, 464-467, doi: 10.1021/ol403350e.
- 279 T. Seitz, R. E. Millán, D. Lentz, C. Jiménez, J. Rodríguez and M. Christmann, *Org. Lett.*, 2018, **20**, 594-597, doi: 10.1021/acs.orglett.7b03706.
- 280 R. A. Medina, D. E. Goeger, P. Hills, S. L. Mooberry, N. Huang, L. I. Romero, E. Ortega-Barría, W. H. Gerwick and K. L. McPhail, J. Am. Chem. Soc., 2008, 130, 6324-6325, doi: 10.1021/ja801383f.
- 281 W. He, H.-B. Qiu, Y.-J. Chen, J. Xi and Z.-J. Yao, Tetrahedron Lett., 2014, 55, 6109-6112, doi: 10.1016/j.tetlet.2014.09.047.
- 282 G. Yao, Z. Pan, C. Wu, W. Wang, L. Fang and W. Su, J. Am. Chem. Soc., 2015, 137, 13488-13491, doi: 10.1021/jacs.5b09286.
- 283 A. Tripathi, J. Puddick, M. R. Prinsep, M. Rottmann and L. T. Tan, J. Nat. Prod., 2010, 73, 1810-1814, doi: 10.1021/np100442x.
- 284 L. Dai, B. Chen, H. Lei, Z. Wang, Y. Liu, Z. Xu and T. Ye, Chem. Commun. , 2012, 48, 8697-8699, doi: 10.1039/c2cc34187e.
- 285 C. Prompanya, C. Fernandes, S. Cravo, M. M. M. Pinto, T. Dethoup, A. M. S. Silva and A. Kijjoa, *Mar. Drugs*, 2015, **13**, 1432-1450, doi: 10.3390/md13031432.
- 286 Y. Masuda, R. Tanaka, A. Ganesan and T. Doi, J. Nat. Prod., 2015, 78, 2286-2291, doi: 10.1021/acs.jnatprod.5b00643.
- 287 T. F. Molinski, K. A. Reynolds and B. I. Morinaka, J. Nat. Prod., 2012, 75, 425-431, doi: 10.1021/np200861n.
- 288 L.-P. Shao, C.-M. Si, Z.-Y. Mao, W. Zhou, T. F. Molinski, B.-G. Wei and G.-Q. Lin, *Org. Chem. Front.*, 2017, **4**, 995-1004, doi: 10.1039/c7qo00052a.
- 289 C. Festa, S. De Marino, V. Sepe, M. V. D'Auria, G. Bifulco, C. Débitus, M. Bucci, V. Vellecco and A. Zampella, Org. Lett., 2011, 13, 1532-1535, doi: 10.1021/ol200221n.
- 290 K. Kashinath, G. R. Jachak, P. R. Athawale, U. K. Marelli, R. G. Gonnade and D. S. Reddy, Org. Lett., 2016, 18, 3178-3181, doi: 10.1021/acs.orglett.6b01395.
- 291 G. R. Jachak, P. R. Athawale, H. Agarwal, M. K. Barthwal, G. Lauro, G. Bifulco and D. S. Reddy, Org. Biomol. Chem., 2018, 16, 9138-9142, doi: 10.1039/c8ob02713g.
- 292 F. He, J. Bao, X.-Y. Zhang, Z.-C. Tu, Y.-M. Shi and S.-H. Qi, J. Nat. Prod., 2013, 76, 1182-1186, doi: 10.1021/np300897v.
- 293 K. Ohsawa, M. Sugai, L. Zhang, Y. Masuda, M. Yoshida and T. Doi, J. Org. Chem., 2019, 84, 6765-6779, doi: 10.1021/acs.joc.9b00526.
- 294 J. Kobayashi, S. Takeuchi, M. Ishibashi, H. Shigemori and T. Sasaki, *Tetrahedron Lett.*, 1992, **33**, 2579-2580, doi: 10.1016/s0040-4039(00)92247-0.
- 295 A. Qureshi, C. S. Stevenson, C. L. Albert, R. S. Jacobs and D. J. Faulkner, J. Nat. Prod., 1999, 62, 1205-1207, doi: 10.1021/np990164x.
- 296 A. Bihlmeier, E. Bourcet, S. Arzt, T. Muller, S. Bräse and W. Klopper, J. Am. Chem. Soc., 2012, 134, 2154-2160, doi: 10.1021/ja2087097.
- 297 A. Casapullo, G. Scognamiglio and G. Cimino, Tetrahedron Lett., 1997, 38, 3643-3646, doi: 10.1016/s0040-4039(97)00690-4.

- 298 S. G. Antonsen, H. Gallantree-Smith, C. H. Görbitz, T. V. Hansen, Y. H. Stenstrøm and J. M. J. Nolsøe, *Molecules*, 2017, 22, 1720, doi: 10.3390/molecules22101720.
- 299 J. M. J. Nolsøe, S. Antonsen, C. H. Görbitz, T. V. Hansen, J. I. Nesman, Å. K. Røhr and Y. H. Stenstrøm, J. Org. Chem., 2018, 83, 15066-15076, doi: 10.1021/acs.joc.8b02318.
- 300 N.-Y. Ji, X.-M. Li, L.-P. Ding and B.-G. Wang, Biochem. Syst. Ecol., 2016, 64, 1-5, doi: 10.1016/j.bse.2015.11.010.
- 301 N.-Y. Ji, X.-M. Li and B.-G. Wang, Helv. Chim. Acta, 2010, 93, 2281-2286, doi: 10.1002/hlca.201000158.
- 302 J. C. Coll, B. W. Skelton, A. H. White and A. D. Wright, Aust. J. Chem., 1989, 42, 1695-1703, doi: 10.1071/ch9891695.
- 303 X.-W. Li, S.-H. Chen, F. Ye, E. Mollo, W.-L. Zhu, H.-L. Liu and Y.-W. Guo, *Tetrahedron*, 2017, **73**, 5239-5243, doi: 10.1016/j.tet.2017.07.027.
- 304 Q. Wu, W.-T. Chen, S.-W. Li, J.-Y. Ye, X.-J. Huan, M. Gavagnin, L.-G. Yao, H. Wang, Z.-H. Miao, X.-W. Li and Y.-W. Guo, *Mar. Drugs*, 2019, 17, 56, doi: 10.3390/md17010056.
- 305 M. Daferner, S. Mensch, T. Anke and O. Sterner, Z. Naturforsch., C J. Biosci., 1999, 54, 474-480.
- 306 G. Pak, E. Park, S. Park and J. Kim, J. Org. Chem., 2020, 85, 14246-14252, doi: 10.1021/acs.joc.0c02194.
- 307 X. Li, I. Sattler and W. Lin, J. Antibiot., 2007, 60, 191-195, doi: 10.1038/ja.2007.21.
- 308 M. T. Holmes and R. Britton, Chem. Eur. J., 2013, 19, 12649-12652, doi: 10.1002/chem.201302352.
- 309 D. J. Shepherd, P. A. Broadwith, B. S. Dyson, R. S. Paton and J. W. Burton, *Chem. Eur. J.*, 2013, **19**, 12644-12648, doi: 10.1002/chem.201302349.
- 310 S. Qi, S. Zhang, J. Huang, Z. Xiao, J. Wu and Q. Li, Magn. Reson. Chem., 2005, 43, 266-268, doi: 10.1002/mrc.1530.
- 311 M. Jiang, P. Sun, H. Tang, B.-S. Liu, T.-J. Li, C. Li and W. Zhang, J. Nat. Prod., 2013, 76, 764-768, doi: 10.1021/np300906b.
- 312 Y.-D. Su, C.-H. Cheng, Z.-H. Wen, Y.-C. Wu and P.-J. Sung, *Bioorg. Med. Chem. Lett.*, 2016, **26**, 3060-3063, doi: 10.1016/j.bmcl.2016.05.015.
- 313 Y. Yaoita and K. Machida, Nat. Prod. Commun., 2017, 12, 1197-1198, doi: 10.1177/1934578x1701200812.
- 314 W. Wang, Y. Liao, R. Chen, Y. Hou, W. Ke, B. Zhang, M. Gao, Z. Shao, J. Chen and F. Li, *Mar. Drugs*, 2018, **16**, 61, doi: 10.3390/md16020061.
- 315 W. Gao, C. Chai, X.-N. Li, W. Sun, F. Li, C. Chen, J. Wang, H. Zhu, Y. Wang, Z. Hu and Y. Zhang, *Tetrahedron Lett.*, 2020, **61**, 151516, doi: 10.1016/j.tetlet.2019.151516.
- 316 N. Tsuji and K. Nagashima, Tetrahedron, 1970, 26, 5201-5213, doi: 10.1016/S0040-4020(01)98729-0.
- 317 A. Präg, B. A. Grüning, M. Häckh, S. Lüdeke, M. Wilde, A. Luzhetskyy, M. Richter, M. Luzhetska, S. Günther and M. Müller, J. Am. Chem. Soc., 2014, **136**, 6195-6198, doi: 10.1021/ja501630w.
- 318 B. C. M. Potts, D. J. Faulkner, J. A. Chan, G. C. Simolike, P. Offen, M. E. Hemling and T. A. Francis, J. Am. Chem. Soc., 1991, **113**, 6321-6322, doi: 10.1021/ja00016a087.
- 319 H. Fuwa, K. Sekine and M. Sasaki, Org. Lett., 2013, 15, 3970-3973, doi: 10.1021/ol4017518.
- 320 H. Fuwa, T. Muto, K. Sekine and M. Sasaki, Chem. Eur. J., 2014, 20, 1848-1860, doi: 10.1002/chem.201303713.
- 321 Q.-X. Wu, M. S. Crews, M. Draskovic, J. Sohn, T. A. Johnson, K. Tenney, F. A. Valeriote, X.-J. Yao, L. F. Bjeldanes and P. Crews, *Org. Lett.*, 2010, **12**, 4458-4461, doi: 10.1021/ol101396n.
- 322 J.-C. Zhao, S.-M. Yu, Y. Liu and Z.-J. Yao, Org. Lett., 2013, 15, 4300-4303, doi: 10.1021/ol4015706.
- 323 J.-C. Zhao, S.-M. Yu, H.-B. Qiu and Z.-J. Yao, Tetrahedron, 2014, 70, 3197-3210, doi: 10.1016/j.tet.2014.03.061.
- 324 M. Tsuda, Y. Kasai, K. Komatsu, T. Sone, M. Tanaka, Y. Mikami and J. Kobayashi, Org. Lett., 2004, 6, 3087-3089, doi: 10.1021/ol048900y.
- 325 T. Mugishima, M. Tsuda, Y. Kasai, H. Ishiyama, E. Fukushi, J. Kawabata, M. Watanabe, K. Akao and J. Kobayashi, *J. Org. Chem.*, 2005, 70, 9430-9435, doi: 10.1021/jo0514990.
- 326 Z. Bian, C. C. Marvin and S. F. Martin, J. Am. Chem. Soc., 2013, 135, 10886-10889, doi: 10.1021/ja405547f.
- 327 Z. Bian, C. C. Marvin, M. Pettersson and S. F. Martin, J. Am. Chem. Soc., 2014, 136, 14184-14192, doi: 10.1021/ja5074646.
- 328 K. Kong, J. A. Enquist, M. E. McCallum, G. M. Smith, T. Matsumaru, E. Menhaji-Klotz and J. L. Wood, J. Am. Chem. Soc., 2013, 135, 10890-10893, doi: 10.1021/ja405548b.
- 329 S. P. B. Ovenden, G. Sberna, R. M. Tait, H. G. Wildman, R. Patel, B. Li, K. Steffy, N. Nguyen and B. M. Meurer-Grimes, *J. Nat. Prod.*, 2004, **67**, 2093-2095, doi: 10.1021/np0497494.

- 330 F.-Y. Du, X.-M. Li, C.-S. Li, Z. Shang and B.-G. Wang, Bioorg. Med. Chem. Lett., 2012, 22, 4650-4653, doi: 10.1016/j.bmcl.2012.05.088.
- 331 P. Lorenzo, R. Álvarez and Á. R. de Lera, J. Nat. Prod., 2014, 77, 421-423, doi: 10.1021/np400969u.
- 332 J. W. Kim, S.-K. Ko, S. Son, K.-S. Shin, I.-J. Ryoo, Y.-S. Hong, H. Oh, B. Y. Hwang, H. Hirota, S. Takahashi, B. Y. Kim, H. Osada, J.-H. Jang and J. S. Ahn, *Bioorg. Med. Chem. Lett.*, 2015, 25, 5398-5401, doi: 10.1016/j.bmcl.2015.09.026.
- 333 S. Chen, J. Wang, X. Lin, B. Zhao, X. Wei, G. Li, K. Kaliaperumal, S. Liao, B. Yang, X. Zhou, J. Liu, S. Xu and Y. Liu, Org. Lett., 2016, 18, 3650-3653, doi: 10.1021/acs.orglett.6b01699.
- 334 J. Chen, J. Li, L. Zhu, X. Peng, Y. Feng, Y. Lu, X. Hu, J. Liang, Q. Zhao and Z. Wang, *Org. Chem. Front.*, 2018, **5**, 3402-3405, doi: 10.1039/c8qo00949j.
- 335 Z. Cheng, L. Lou, D. Liu, X. Li, P. Proksch, S. Yin and W. Lin, J. Nat. Prod., 2016, 79, 2941-2952, doi: 10.1021/acs.jnatprod.6b00801.
- 336 J.-F. Wu and P.-Q. Huang, Chin. Chem. Lett., 2020, 31, 61-63, doi: 10.1016/j.cclet.2019.06.043.
- 337 R. W. Dunlop, P. T. Murphy and R. J. Wells, Aust. J. Chem., 1979, 32, 2735-2739, doi: 10.1071/ch9792735.
- 338 J. V. Leary, R. Kfir, J. J. Sims and D. W. Fulbright, *Mutat. Res., Genet. Toxicol. Test.*, 1979, **68**, 301-305, doi: 10.1016/0165-1218(79)90162-9.
- 339 R. T. C. Brownlee, J. G. Hall and J. A. Reiss, Org. Magn. Reson., 1983, 21, 544-547, doi: 10.1002/omr.1270210905.
- 340 D. B. Stierle and J. J. Sims, Tetrahedron Lett., 1984, 25, 153-156, doi: 10.1016/s0040-4039(00)99827-7.
- 341 S. Naylor, L. V. Manes and P. Crews, J. Nat. Prod., 1985, 48, 72-75, doi: 10.1021/np50037a013.
- 342 V. Kesternich, R. Martinez, E. Gutierrez, K. Kallesteros and H. Mansilla, Bol. Soc. Chil. Quim., 1997, 42, 105-108.
- 343 G. W. Gribble, Naturally Occurring Organohalogen Compounds—A Comprehensive Update; Series Fortschritte der Chemie organischer Naturstoffe Progress in the Chemistry of Organic Natural Products, Springer-Verlag/Wien, New York, NY, USA, 2010, Vol. 91.
- 344 M. A. Timmers, D. A. Dias and S. Urban, Mar. Drugs, 2012, 10, 2089-2102, doi: 10.3390/md10092089.
- 345 J. Y. Cho, P. G. Williams, H. C. Kwon, P. R. Jensen and W. Fenical, J. Nat. Prod., 2007, 70, 1321-1328, doi: 10.1021/np070101b.
- 346 U. Pal, S. Ranatunga, Y. Ariyarathna and J. R. Del Valle, Org. Lett., 2009, 11, 5298-5301, doi: 10.1021/ol902251c.
- 347 S. Ranatunga, C.-H. A. Tang, C.-C. A. Hu and J. R. Del Valle, J. Org. Chem., 2012, 77, 9859-9864, doi: 10.1021/jo301723y.
- 348 J. W. Cha, J.-S. Park, T. Sim, S.-J. Nam, H. C. Kwon, J. R. Del Valle and W. Fenical, *J. Nat. Prod.*, 2012, **75**, 1648-1651, doi: 10.1021/np3003854.
- 349 R. Kazlauskas, P. T. Murphy, R. J. Wells and A. J. Blackman, Aust. J. Chem., 1982, 35, 113-120, doi: 10.1071/ch9820113.
- 350 T. O. Ronson, M. J. Burns, M. H. H. Voelkel, K. J. Evans, J. M. Lynam, R. J. K. Taylor and I. J. S. Fairlamb, *Chem. Eur. J.*, 2015, **21**, 18905-18909, doi: 10.1002/chem.201504089.