## **Supplementary Material**

## Correlation of crystal structure and ion storage behavior of MoO<sub>3</sub> electrode materials for aluminum-ion energy storage studied with in-situ X-ray spectroscopies

Feng Hao Hsu, Su Yang Hsu<sup>‡</sup>, Bo Hao Chen, Jeng Lung Chen, Jin Ming Chen\*,

Kueih Tzu Lu\*

National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan

\*Authors to whom correspondence should be addressed. E-mail: jmchen@nsrrc.org.tw (J.M.

C.) and <u>ktlu@nsrrc.org.tw (K. T. Lu)</u>

<sup>‡</sup> Contributed equally to this work with first author: F. H. Hsu



Figure S1. The XPS spectra of the  $MoO_3$  materials with various crystal phases after insertion of  $Al^{3+}$  ion.

Table S1. As-characterized composition of the  $MoO_3$  electrodes with various crystal phases after insertion of  $A1^{3+}$  ion deduced by XPS measurements.

| Sample                     | Al atomic content % | Mo atomic content % | O atomic content % |
|----------------------------|---------------------|---------------------|--------------------|
| α-MoO <sub>3</sub>         | 1.33                | 19.07               | 79.59              |
| $\beta$ -MoO <sub>3</sub>  | 0.14                | 21.92               | 77.94              |
| <i>h</i> -MoO <sub>3</sub> | 0.98                | 20.99               | 78.09              |

The Electrochemical impedance spectroscopy (EIS) measurements of the various MoO<sub>3</sub> electrode materials are shown in Figure S2. The EIS measurements were recorded in a frequency range of 10<sup>5</sup> to 0.1 Hz at an open circuit potential. In the high-frequency region of Nyquist plots, the intersection with real axis and the diameter of semicircle represent the resistance of electrochemical system ( $R_s$ ) and charge transfer resistance ( $R_{ct}$ ), respectively. There clearly show smaller  $R_{ct}$  for the  $\alpha$ -MoO<sub>3</sub> and h-MoO<sub>3</sub> electrode materials, whereas the  $\beta$ -MoO<sub>3</sub> electrode material has the largest  $R_{ct}$ . This result indicates that the charge-transfer at the interface for the  $\alpha$ -MoO<sub>3</sub> and h-MoO<sub>3</sub> electrode materials is relatively easier than that for  $\beta$ -MoO<sub>3</sub>. Furthermore, the slope of straight line in the low-frequency region is defined as the diffusion resistance of  $\alpha$ -MoO<sub>3</sub> is lower than that of h-MoO<sub>3</sub> and  $\beta$ -MoO<sub>3</sub>, whereas the diffusion resistance of  $\alpha$ -MoO<sub>3</sub> and  $\beta$ -MoO<sub>3</sub> electrode materials show no significant difference.



Figure S2. The EIS curves of various MoO<sub>3</sub> electrode materials.

The rate performance of the various  $MoO_3$  electrode materials is characterized under current density from 1 A g<sup>-1</sup> to 5 A g<sup>-1</sup> with potential range from -0.7 V to 0.6 V. It is observed that the charge and discharge gravimetric capacities are decreased with increasing current density, which is attributed to the polarization phenomenon of the  $MoO_3$  electrode materials.



Figure S3. Rate performance and variation of charge/discharge capacities of the various MoO<sub>3</sub> electrode materials.



Figure S4. (a) The average valence state of Mo in the various  $MoO_3$  electrode materials under insertion/extraction of  $Al^{3+}$  ion, and (b) the Mo K-edge XANES spectra of the various  $MoO_3$  electrode materials together with the reference samples.



Figure S5. The MoO<sub>6</sub> octahedral structure in the (a)  $\alpha$ -MoO<sub>3</sub>, and (b)  $\beta$ -MoO<sub>3</sub> materials.