Supplementary Material

Correlation of crystal structure and ion storage behavior of MoO$_3$ electrode materials for aluminum-ion energy storage studied with in-situ X-ray spectroscopies

Feng Hao Hsu, Su Yang Hsu‡, Bo Hao Chen, Jeng Lung Chen, Jin Ming Chen*, Kueih Tzu Lu*

National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan

*Authors to whom correspondence should be addressed. E-mail: jmchen@nsrrc.org.tw (J.M. C.) and ktlu@nsrrc.org.tw (K. T. Lu)
‡ Contributed equally to this work with first author: F. H. Hsu
Figure S1. The XPS spectra of the MoO₃ materials with various crystal phases after insertion of Al³⁺ ion.

Table S1. As-characterized composition of the MoO₃ electrodes with various crystal phases after insertion of Al³⁺ ion deduced by XPS measurements.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Al atomic content %</th>
<th>Mo atomic content %</th>
<th>O atomic content %</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-MoO₃</td>
<td>1.33</td>
<td>19.07</td>
<td>79.59</td>
</tr>
<tr>
<td>β-MoO₃</td>
<td>0.14</td>
<td>21.92</td>
<td>77.94</td>
</tr>
<tr>
<td>h-MoO₃</td>
<td>0.98</td>
<td>20.99</td>
<td>78.09</td>
</tr>
</tbody>
</table>
The Electrochemical impedance spectroscopy (EIS) measurements of the various MoO$_3$ electrode materials are shown in Figure S2. The EIS measurements were recorded in a frequency range of 10^5 to 0.1 Hz at an open circuit potential. In the high-frequency region of Nyquist plots, the intersection with real axis and the diameter of semicircle represent the resistance of electrochemical system (R_s) and charge transfer resistance (R_{ct}), respectively. There clearly show smaller R_{ct} for the α-MoO$_3$ and h-MoO$_3$ electrode materials, whereas the β-MoO$_3$ electrode material has the largest R_{ct}. This result indicates that the charge-transfer at the interface for the α-MoO$_3$ and h-MoO$_3$ electrode materials is relatively easier than that for β-MoO$_3$. Furthermore, the slope of straight line in the low-frequency region is defined as the diffusion resistance. The slope trend (α-MoO$_3$ > h-MoO$_3$ and β-MoO$_3$) indicates that the diffusion resistance of α-MoO$_3$ is lower than that of h-MoO$_3$ and β-MoO$_3$, whereas the diffusion resistances of both h-MoO$_3$ and β-MoO$_3$ electrode materials show no significant difference.
The rate performance of the various MoO$_3$ electrode materials is characterized under current density from 1 A g$^{-1}$ to 5 A g$^{-1}$ with potential range from -0.7 V to 0.6 V. It is observed that the charge and discharge gravimetric capacities are decreased with increasing current density, which is attributed to the polarization phenomenon of the MoO$_3$ electrode materials.

Figure S3. Rate performance and variation of charge/discharge capacities of the various MoO$_3$ electrode materials.
Figure S4. (a) The average valence state of Mo in the various MoO$_3$ electrode materials under insertion/extraction of Al$^{3+}$ ion, and (b) the Mo K-edge XANES spectra of the various MoO$_3$ electrode materials together with the reference samples.
Figure S5. The MoO$_6$ octahedral structure in the (a) α-MoO$_3$, and (b) β-MoO$_3$ materials.