
Supplementary Information for Critical Peeling of Tethered

Nanoribbons

Andrea Silva,1, 2, ∗ Erio Tosatti,2, 3, 1 and Andrea Vanossi1, 2

1CNR-IOM, Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali,

c/o SISSA Via Bonomea 265, 34136 Trieste, Italy

2International School for Advanced Studies (SISSA),

Via Bonomea 265, 34136 Trieste, Italy.

3The Abdus Salam International Centre for Theoretical Physics (ICTP),

Strada Costiera 11, 34151 Trieste, Italy

1

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2022



l

hl′ 

θ

AFM 
head

Gold substrate

Superlubric 
tailz

x ϵ

l

hl′ 

θ

Gold substrate

Superlubric 
tailz

x ϵ

F
ϕ F∥

F⊥

l θ

F

Gold substrate

Fix tail

Mobile 
head

z

x ϵ Δ
Δ cos θ

Δ(1 − cos θ) GNR

(a) (b)

(c)

FIG. 1. (a) Kendall setup. The tail is fix while the head is free to move in xz. The ribbon is

shown as a solid black line. Dashed gray segments represent a previous configuration of the ribbon.

The application point of the force changes as the peeling proceeds. This change is the projection

of the peeled front advancement ∆ on the direction of the force. (b) Setup between Kendall and

AFM: the ribbon peels at an angle θ under a constant-force at an angle φ acting at fixed coordinate

x during the lifting. The tail can slide without friction while the head is fixed at the starting x

coordinate. The application point of the force changes in z only. (c) AFM-like setup. The AFM

is moving on a timescale larger than the relaxation time of the GNR. Thus, it is considered at a

fixed height h and exerting the necessary force to maintain the GNR in this position, i.e. the force

is can vary.
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I. CLASSIC MODELS

Consider a GNR of length L as sketched in fig. 1. The GNR adheres to a smooth metal

surface, such as Au(111), with a strength ε, in units of energy over length. The head is

attached via a spring A to an AFM tip, whose end at height h above the surface is being

lifted. We shall consider the head spring to be infinitely stiff A → ∞, so that the head of

the of GNR follows the AFM tip without delay.

A. Classic Kendall model

In the Kendall [1] configuration the head is lifted at constant force F and the application

points can move horizontally and vertically. On the other side, the tail is fix. The lifted part

of the GNR is extensible, with Young modulus Y . Following Kendall assumptions, we shall

not consider the bending rigidity of the GNR, resulting in a sharp profile at the detachment

point. The energy of the system as a function of the attached fraction l and the detached

part δ is composed of four terms: the adhesive energy, the work done on the system by the

external force, the extension of the ribbon and the shift in the force application point

E(l) = −εl −
∫ L−l

0

~F · ~∆dx +
K̃

2
δ2 + Fδ, (1)

where ∆ is the peeling segment, see fig. 1a. The work done by the applied force can be

written as
∫ L−l
0

~F · ~∆dx = F (L− l)(1−cos θ), see fig. 1a. From classical elasticity theory [1],

the effective spring constant of the GNR is K̃ = Y/(L− l), being (L− l) the rest length of

the detached part and the elastic displacement due to F is δ = F (L − l)/Y . Thus eq. (1)

becomes

E(l) = −εl − F (L− l)(1− cos θ) − 1

2

F 2(L− l)
Y

. (2)

The equilibrium configuration satisfies ∂E
∂l

= 0, i.e.

− ε+ F (1− cos θ) +
1

2

F 2

Y
= 0, (3)

which is equivalent to equation 2 in Ref. [1]. In the limit of inextensible GNR, limY →∞,

equation 5 in Ref. [1] is recovered

F =
ε

1− cos θ
(4)

or cos θ = 1− ε
F

. The peeling proceeds at constant angle and constant force, with the peeling

front moving towards the tail.
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B. AFM-Kendall Model

Let us now consider a setup closer to AFM experiments. As sketched in fig. 1b, the

AFM tip, considerably more massive than the GNR, operates at fix x, y coordinates and the

GNR slides over the substrate without resistance: the tail can advance while the point of

application of the force is fixed in the x direction. In AFM experiments the applied force F

is thus always vertical. For the sake of linking the Kendall setup to the AFM setup, consider

a fictitious system in which an angle φ is present between the force F and the z axis while

the GNR peels at an angle θ, as shown in fig. 1b.

The energy in this case is

E(l) = −εl − F (L− l) sin θ cosφ− 1

2
F sin(φ+ θ)2

(L− l)
Y

.

At equilibrium

−ε + F sin θ cosφ +
1

2

(F sin(φ+ θ)2

Y
= 0, (5)

which is the counterpart of eq. (3) in this geometry. For φ = π/2− θ, i.e. F parallel to the

lifted fraction as in Kendall, the condition eq. (5)

−ε + F (sin θ)2 +
1

2

F 2

Y
= 0. (6)

For φ = 0, i.e. F vertical, the condition eq. (5)

−ε + (F sin θ) +
1

2

(F sin θ)2

Y
= 0. (7)

In the limit of inextensible GNR (Y →∞), both eqs. (6) and (7) become

F = ε/ sin(θ). (8)

Thus, the functional form of the peeling evolution in this setup is different from the original

Kendall system but the underlying physical principle is unchanged. Note that for θ = π/2 the

solutions in eqs. (3), (6) and (7) are equivalent. The force F is minimal and the configurations

become the same: vertical peeling.

C. Adiabatic Peeling

In AFM experiments, the tip is lifted extremely slowly (v ≈ µm/s), on a timescale orders

of magnitude larger than the relaxation time of the GNR. The peeling is adiabatic, with the
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GNR relaxing to the mechanically stable configuration at each height reached by the AFM

tip. Thus, in this experimental setup is more realistic to work at constant height h rather

than constant force F . The assumption is that the ideal constraint point will applying the

minimum force necessary to keep the head of the GNR at the desired height h.

Let us focus on inextensible GNR, i.e. Young modulus Y → ∞, and neglect bending

rigidity. Thus the length L of the GNR is preserved during the peeling. In this framework,

the state of ribbon can be expressed as a function of the peeling angle, which is now free to

vary, as sketched in fig. 1c. This setup represent the conjugate, constant-height version of

the Kendall model.

The energy is a function of θ and depends parametrically on the lifting height h:

E(θ;h) = −εl = −ε(L− h

sin θ
). (9)

At equilibrium

∂E(θ;h)

∂θ
= −ε h

sin2 θ
cos θ = 0, (10)

which has the only solution θ = π/2. This is a Gigli-like solution [2], without bending

rigidity: the tail advances until the detachment front is below the tip and the peeling

proceeds at a right angle. During the peeling the force F = ∂E/∂h is constant [F ]π/2 = ε.

This behaviour is in agreement with Kendall’s results in eq. (8): the minimum value of the

peeling force is found at vertical peeling.

II. ANALYTIC MODEL ADDITIONAL DETAILS

A. Energy economy for L = 30 nm

Figure 2 reports the total energy, the adhesion energy, the tether energy and the derivative

of the force with respect to h for the L = 30 nm case discussed in the main text.

B. Infinite length limit

The configuration and energy economy of a modelled ribbon of length L = 1× 106 Å is

reported in fig. 3. All points at a finite Q reach the steady state.
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FIG. 2. (a) Total energy, (b) the adhesion energy, (c) the tether energy and (d) the derivative of

the force with respect to h. See the main text for definitions.
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FIG. 3. Configuration, energy contributions and force of the system in the model for L =

1× 106 Å.
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FIG. 4. Smoothing GNR lateral profile at finite temperature T = 100 K. Orange points are

C atoms. The solid line represent the profile used to compute the peeling angle. The profile is

obtained from a running average over the y, z coordinates.

III. BENDING ANGLE ESTIMATION

Figure 4 shows how the peeling angle in MD simulations is computed. First the GNR

profile (orange points in fig. 4) is smoothed by a running average (window n = 80 atoms)

along the x and y directions (blue solid line in fig. 4). The tangent to this line is estimated

by compute the gradient numerically. The angle between the first and last segments of the

smoothed profile (arrows in fig. 4) is used to estimated the peeling angle.
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FIG. 5. Force on the AFM tip in finite temperature simulations for Q = 0.5 eV/Å2. Points are

recorded values during the MD simulations, solid lines are a running average of width N = 500

time-steps. Dashed lines in grayscale mark the F ∝ h1/3 behaviour as a guide to the eye.

IV. FINITE TEMPERATURE

To understand the effect of temperature on the system, we focus on an intermediate

tethering Q = 0.5 eV/Å2 and simulate the peeling at increasing temperatures. Figure 5

reports the peeling force for temperatures from 0 to 300 K. The detached fraction of the

GNR behaves as a defective guitar string that keeps detuning as it vibrates. The extremely

soft flexural mode of graphene deforms the GNR at almost no cost and, as the tip rises,

large oscillation appear in the lifted fraction. These oscillations intermittently change side

in the competition between the adhesive energy and the tip force to move the position of

the peeling front, see Supplementary Movie 2. When the adhesion and thermal fluctuation

work together, the peeling front moves closer to the x coordinate of the tip; hence the
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adsorbed fraction increases and the peeling force suddenly increases. When fluctuations and

the vertical tip pulling are allies, the peeling front retreats towards the tail, reducing the

peeling force. In the latter, if the fluctuation is large enough, it can even compress the tip

spring, resulting in a negative force, a behaviour not possible at zero temperature. The

soft flexural mode of the GNR adds a substantial noise to the force trace (semi-transparent

dots in fig. 5) that clouds the signal even after a running average over 500 configurations

(solid lines in fig. 5). The zero-temperature scaling behaviour is not clearly detected here

for curves above 10 K.

A clearer signal is obtained from the peeling angle θ, as reported in the Conclusions in

main text.

V. SUPPLEMENTARY MOVIE 1

Peeling at different Q: blue Q = 0 eV/Å2, red Q = 0.001 eV/Å2, gray Q = 0.146 eV/Å2,

yellow Q = 0.5 eV/Å2, green Q = 50 eV/Å2.

VI. SUPPLEMENTARY MOVIE 2

Intrinsic oscillations of the GNR at Q = 0.5 eV/Å2. The oscillations are created by lifting

the center of the detached part of δ = 10 Å and letting the system evolve in NVE setup.
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