Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Supplemental Materials: Benchmarking Various Types of Partial Atomic Charges for Classical All-Atom Simulations of Metal-Organic Frameworks

Sizhe Liu^1 and Binquan Luan^1

¹IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA

I. SIX-LETTER NAMES FROM THE CORE2019 DATABASE FOR THE 181 MOFS

indices	names	indices	names	indices	names		
001	ABAVIJ	051	FEFDAX	101	NAKLIW		
002	ADABUE	052	FEWTUY	102	NEJRUR		
003	ADAXEK	053	FOHCIP	103	NEJSEC		
004	AFOYOK	054	FUTDII	104	NEVVAM		
005	ANOMUM	055	GELJAJ	105	NIHBIQ01		
006	ATIJUJ	056	GELVID01	106	NOFHUM		
007	AVAQIX	057	GIMSIG	107	OCAQOY		
008	AVELOD	058	GIZVER	108	OFAWEZ		
009	AVEMAQ	059	HAJLEK	109	OHAQEU		
010	AWAGEL	060	HAJLIO	110	OPIWEQ	1ndices	names
011	BAHGUN01	061	HAJLOU	111	PAPPED	151	VAQLEG
012	BAHGUN04	062	HAJLUA	112	PEFRID	152	WAEKAO
013	BAHGUN	063	HEGJUZ	113	PELGOE	155	WAFKAQ
014	BARZAW	064	HEKTUO	114	PESTUD	154	WEISAU
015	BARZOK	065	HIFTOG02	115	PEWXUL01	155	WEYMIY
016	BASTEW	066	ICAGOK	116	PEWXUL	150	WEYMIY
017	BEPVEZ	067	IFENOY	117	PEXBIF	157	WEZCIO
018	BEZSIK	068	ILUJEF	118	PEYSIW	158	WOUPUE
019	BIHMUC	069	IQUNAJ01	119	PIJJOI	109	WOIMUG
020	BURJOO	070	ISIKIF	120	PURJIW	161	WUTDES
021	BUSQEM	071	ITETEH	121	QEBGAH	169	VACZEU
022	BUVXOG	072	IVETOT	122	QOKCID	162	XACZER XAMDUM04
023	BUVYEX	073	IXEQIL	123	QOPHEI	164	XAMDUM04
024	BUVYIB	074	JASNAT	124	QUPJAN	104	XAMDUM05
025	CAHSOU	075	JASNEX	125	QUPZAC	105	XADSOV
026	CAVSUP	076	KANDIO	126	RETBEZ	167	XAPSOT
027	CAXVII	077	KENJEU	127	RIBDEN	169	XAWZOM
028	CAXVOO	078	KEVWUF	128	SAXFII	100	XEUVUC
029	CAXVUU	079	KIDDOS	129	SETSIV	170	XIMPOA
030	CAXWAB	080	KIFWUT	130	SOWYOS	170	VINDAD
031	CAXWIJ	081	KUXLUL	131	SUJQOE	171	XOKHAH
032	CAYSOK	082	LAGHIL	132	SUJREV	172	XUCNOZ
033	CEGDUO	083	LAGWEX	133	TAGSEB	173	XUMEIV
034	CESYEF01	084	LEDCAA	134	TARVOX	174	VIIVHED
035	CITXUZ	085	LEGGOU	135	TEQPAI	175	VACHUH
036	CUGLTM01	086	LEPLEZ	136	TEQVAO	177	VARSAN
037	CUGLTM	087	LERNEC01	137	TESHAB	178	VEZKIZ
038	CUVTUJ	088	LERNEC	138	TETZID	170	VUCNEO
039	DAGDUL	089	LOLQIM	139	TEWGEJ01	180	VIIWKII
040	DAWBOU	090	LUKRUE	140	TIRRIW	181	ZEDBOB
041	DAWCAH	091	LUMDEC	141	TOLGOR		ZEDITOR
042	DAXHIV01	092	LUPTAS	142	TUTZOX		
043	DAXHIV	093	MABJUV01	143	UBACOR		
044	DAXHUH	094	MABKEG	144	UKULOB		
045	DIDBEZ	095	MATTOR	145	UMELUU		
046	DIZQOT	096	MATTUX	146	UNABUH01		
047	DOKHOB	097	MEHPAQ	147	UNABUH		
048	EBIHII	098	MIZJUB	148	UNACIW		
049	FAKGOP	099	MOYYIJ	149	UWUTIQ		
050	FECZAQ	100	MUWQEB	150	VAGTAA		

FIG. S1: The frequencies of the different elements in the 181 MOFs (orange bars) and the number of MOFs containing each element (blue bars). H, C, N and O are excluded from the graph, and their counts are 9977, 13873, 2418, and 4462, respectively.

FIG. S2: The primitive cell volumes V_{cell} versus the MOF indices.

FIG. S3: The calculated Δp for the 181 MOFs are plotted against p, where points based on different charges are labelled using the distinct markers. All the data points are fitted to a red line, which indicates a linear correlation between $\log 10(p)$ and $\log 10(\Delta p)$ when $p > 10^{-4} e \text{\AA}^{-2}$.

FIG. S4: The calculated Δp for the 181 MOFs are plotted against RSD in (a), where points based on different charges are labelled using distinct markers. The points in (b) locate at the coordinates of $(\overline{\Delta p}, \overline{RSD})$ based on the five charge types, and the horizontal and the vertical bars at each point are standard error of Δp and RSD, respectively.