Ab initio, artificial neural network predictions and experimental synthesis of mischmetal alloying in Sm-Co permanent magnets

Stefanos Giaremis¹, Georgios Katsikas¹, Georgios Sempros¹, Margarit Gjoka², Charalambos Sarafidis¹, Joseph Kioseoglou^{1,*}

¹Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

² Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece

*Corresponding author: sifisl@auth.gr

Supplementary Information

TABLES

Table S1: Total magnetization per atom and per formula unit for SmCo5 by using an 11 and a 16 e- configuration as valence, along with a U parameter of 2.22 eV for the 3d orbitals of Co and 4.7 eV for the 4f orbitals of Sm. Results are presented for simulations performed with and without considering the impact of SOC.

	11 val	ence e-	16 valence e⁻		
m/atom (µB/atom)	DFT+U	DFT+U (SOC)	DFT+U	DFT+U (SOC)	
1a (1×RE)	-0.316	-0.301	-5.668	-5.630	
2c average (2×Co)	1.748	1.736	1.783	1.780	
3g average (3×Co)	1.792	1.783	1.816	1.816	
Total (µB/f.u.)	8.557	8.520	3.345	3.376	

Table S2: Orbital moment per atom and per formula unit for SmCo₅ by using an 11 and a 16-valence e⁻ configuration as valence, along with a U parameter of 2.22 eV for the 3d orbitals of Co and 4.7 eV for the 4f orbitals of Sm.

m _L /atom (µB/atom)	11 valence e ⁻ (SRM)	16 valence e ⁻
1a (1×RE)	0.087	2.115
2c average (2×Co)	0.437	0.315
3g average (3×Co)	0.352	0.424
Total (µB/f.u.)	2.017	4.017

Table S3: Total magnetization per atom and per formula unit for SmCo₅ by using a 16 e⁻ configuration as valence, with two specified sets of values for the U parameter for the 3d orbitals of Co and the 4f orbitals of Sm. The impact of SOC was considered.

m/stom (uR/stom)	$U_{Sm} = U_{Co}$	$U_{Sm} = 6 \text{ eV},$
	= 0 eV	$U_{Co} = 0 eV$
1a (1×RE)	-0.162	4.796
2c average (2×Co)	1.450	1.508
3g average (3×Co)	1.467	1.526
Total (µB/f.u.)	7.138	12.390

Table S4: Orbital moment per atom and per formula unit for SmCo₅ by using a 16 e⁻ configuration as valence, with two specified sets of values for the U parameter for the 3d orbitals of Co and the 4f orbitals of Sm. The impact of SOC was considered.

m _L /atom (μB/atom)	$U_{Sm} = U_{Co}$ $= 0.0 \text{ eV}$	$U_{Sm} = 6.0 \text{ eV},$ $U_{Co} = 0.0 \text{ eV}$		
1a (1×RE)	-0.846	-1.423		
2c average (2×Co)	0.162	0.143		
3g average (3×Co)	0.151	0.127		
Total (µB/f.u.)	-0.070	-0.756		

Table S5: Correlation matrix for the lattice constant, *a*, *c/a* ratio, total magnetization per formula unit and relative total energy of the $34\ 2\times2\times2$ supercell systems comprising the $2\times2\times2$ dataset.

	а	c/a	m/f.u.	Relative E per atom
a	1.000	-0.976	0.178	-0.231
c/a	-0.976	1.000	-0.201	0.245
m/f.u.	0.178	-0.201	1.000	0.315
Relative E per atom	-0.231	0.245	0.315	1.000

Table S6: Correlation matrix for the lattice constant, *a*, *c/a* ratio, total magnetization per formula unit and relative total energy of the 400 $2 \times 2 \times 4$ supercell systems comprising the $2 \times 2 \times 4$ dataset.

	а	c/a	m/f.u.	Relative E per atom
а	1.000	-0.817	0.104	0.333
c/a	-0.817	1.000	-0.192	-0.579
m/f.u.	0.104	-0.192	1.000	0.284
Relative E per atom	0.333	-0.579	0.284	1.000

Table S7: Values of enthalpy of formation per formula unit with respect to the SmCo₅, LaCo₅ and CeCo₅ binary compounds, total magnetization per formula unit, lattice constant, a, and c/a ratio for the $2 \times 2 \times 2$ dataset configurations that were found unstable with respect to the binary compounds.

ΔH _{binary} /f.u. (meV)	m/f.u. (μB/f.u.)	a (Å)	c/a
38.7	7.946	5.255	0.743
44.8	8.133	5.038	0.774

Table S8: Values of enthalpy of formation per formula unit with respect to the SmCo₅, LaCo₅ and CeCo₅ binary compounds, total magnetization per formula unit, lattice constant, a, and c/a ratio for the $2 \times 2 \times 4$ dataset configurations that were found unstable with respect to the binary compounds.

ΔH _{binary} /f.u. (meV)	m/f.u. (μB/f.u.)	a (Å)	c/a
13.1	7.465	5.067	0.772
7.2	7.459	5.050	0.778
1.8	7.459	5.036	0.776
8.6	7.455	5.021	0.782
2.3	7.461	5.036	0.787
39.1	7.464	5.055	0.773
17.9	7.471	5.067	0.776
0.5	7.460	5.070	0.775
10.5	7.460	5.065	0.772
15.9	7.455	5.060	0.773
31.2	7.468	5.063	0.773
2.4	7.450	5.000	0.812

FIGURES

Figure S1: Electronic total and projected DOS of SmCo₅, as calculated by using a 16 e⁻ configuration as valence with three different sets of the U parameter for Sm and Co (a-c) and by using the SRM (d) with $U_{Sm} = 4.7 \text{ eV}$, $U_{Co} = 2.22 \text{ eV}$.

Figure S2: Scatter matrix plot with a kernel density estimation fit in the diagonal plot elements for the lattice constant, a, c/a ratio, total magnetization per formula unit and relative total energy of the 34 2×2×2 supercell systems comprising the 2×2×2 dataset.

Figure S3: Scatter matrix plot with a kernel density estimation fit in the diagonal plot elements for the lattice constant, a, c/a ratio, total magnetization per formula unit and relative total energy of the 400 2×2×4 supercell systems comprising the 2×2×2 dataset.

Figure S4: Scatter plot for c/a ratio against lattice constant, a, with color code for the respective values of total magnetization per formula unit (a, b) and relative energy per atom (c, d) of each configuration for the 35 48 atom configurations of the $2 \times 2 \times 2$ dataset (a, c) and the 400 96 atom con-figurations of the $2 \times 2 \times 4$ dataset (b, d).

	0.00	4.00	Units (3.56	of stand 3.11	ard devi 2.67	ation of 2.22	total m	agnetiz 1.33	ation 0.89	0.44	
Co-Co mean	0.43	0.49	0.52	0.47	0.064	-0.25	-0.24	-0.24	-0.22	-0.13	- 1.00
Co-Co mode	0.26	0.32	0.35	0.28	0.019	-0.22	-0.23	-0.23	-0.22	-0.12	
Co-Co std	0.099	0.11	0.13	0.2	0.068	0.063	0.078	0.078	0.067	0.033	
Co-Ce mean	0.027	0.024	0.022	0.037	-0.026	-0.001	0.018	0.018	0.027	0.019	- 0.75
Co-Ce mode	0.022	-0.0063	-0.025	0.019	-0.017	0.014	0.07	0.07	0.093	0.065	
Co-Ce std	-0.0023	-0.012	-0.015	0.0079	-0.044	-0.013	0.0025	0.0025	0.0072	0.0034	
Co-Sm mean	0.015	0.019	0.025	0.023	-0.0057	-0.0091	0.028	0.028	0.056	0.031	
Co-Sm mode	-0.04	-0.059	-0.045	-0.071	-0.094	-0.06	-0.019	-0.019	0.0039	-0.023	- 0.50
Co-Sm std	-0.044	-0.056	-0.063	-0.042	-0.039	-0.00055	0.032	0.032	0.05	0.011	
Co-La mean	0.016	0.018	0.018	0.067	0.013	0.032	0.061	0.061	0.052	-0.012	
Co-La mode	0.077	0.055	-0.0078	0.055	-0.0086	-0.059	-0.04	-0.04	-0.021	0.075	-0.25
Co-La std	-0.006	-0.0023	0.0011	0.047	-0.0037	0.018	0.049	0.049	0.049	-0.0071	
Ce-Ce mean	0.048	0.025	0.05	0.04	-0.0059	0.049	0.0036	0.0036	-0.0038	-0.051	
Ce-Ce mode	-0.0031	-0.062	-0.061	0.012	0.013	0.026	-0.04	-0.04	-0.045	-0.088	
Ce-Ce std	0.077	0.12	0.15	0.11	0.046	0.1	0.074	0.074	0.051	0.073	- 0.00
Ce-Sm mean	-0.05	-0.025	-0.069	-0.054	-0.0041	0.038	0.051	0.051	0.023	0.045	
Ce-Sm mode	-0.09	-0.11	-0.12	-0.071	0.025	0.087	0.089	0.089	0.024	0.02	
Ce-Sm std	-0.0058	0.05	0.043	0.014	0.022	-0.029	0.0079	0.0079	0.0091	0.041	
Ce-La mean	0.015	-0.005	-0.009	0.04	0.0031	0.052	0.045	0.045	0.026	-0.00032	0.25
Ce-La mode	-0.018	-0.019	-0.021	0.0027	0.078	0.073	0.081	0.081	0.1	0.1	
Ce-La std	0.04	0.03	0.01	0.059	0.0051	0.026	0.07	0.07	0.044	-0.011	
Sm-Sm mean	-0.022	-0.069	-0.0B	-0.069	0.0045	0.073	0.013	0.013	-8e-05	-0.01	0.50
Sm-Sm mode	-0.12	-0.15	-0.16	-0.12	-0.049	0.076	0.066	0.066	0.058	0.078	
Sm-Sm std	0.041	0.046	0.055	0.041	0.044	-0.016	-0.049	-0.049	-0.039	-0.07	
Sm-La mean	0.0063	0.026	0.021	0.054	0.011	-0.012	0.032	0.032	0.028	-0.035	
Sm-La mode	0.064	0.08	0.059	0.057	0.025	0.042	0.035	0.035	0.053	0.019	0.75
Sm-La std	0.02	0.039	0.037	0.057	0.011	-0.023	0.016	0.016	0.0069	-0.027	
La-La mean	-0.016	-0.011	-0.025	-0.074	-0.017	-0.034	-0.046	-0.046	-0.063	-0.011	
La-La mode	-0.016	-0.011	-0.025	-0.074	-0.017	-0.034	-0.046	-0.045	-0.063	-0.011	1.00
100	0	0	0	0	0	0	0	0	0	0	-1.00

Figure S5: Correlation heatmap of the mean, the mode and the standard deviation of the interatomic distances between each atom type, filtered iteratively in each column by units of standard deviation of the total magnetization of all the cases of the 2×2×4 dataset.

Figure S6: Residuals plot for the ANN regression model for the prediction of the total magnetization in the cases of the 2×2×4 dataset.

Figure S7: Confusion matrices for each one of the 3-fold cross validation steps (a-c) for the evaluation of the ANN classification model. Diagonal terms present the number of correct predictions and the rest of the terms are misclassifications. Classes 0, 1 and 2 represent the three magnetization clusters of the $2 \times 2 \times 4$ dataset in ascending order of the magnetization value.