Supplementary Information

Acquiring structural and mechanical information of the fibrous network through deep learning

Shuo Yang^a, Chenxi Zhao^a, Jing Ren^a, Ke Zheng^b, Zhengzhong Shao^c and Shengjie Ling^{a,*}

^aSchool of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China.

^bBiomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China.

^cState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China.

*Corresponding author: <u>lingshj@shanghaitech.edu.cn</u>

Figure S1 The log-normal distribution fitting of contour length (A) and network mesh size (B).

Figure S2 Semantic segmentation of other kinds of fiber network images. (A) Selfassembly fibrils of a biosynthetic amino acid polymer synthesized by the yeast *Pichia pastoris*, reported by C. Charbonneau *et al.*¹ (B) Amyloid- β peptide, A β_{12-28} , reported by Y. C. Lin *et al.*² (C) Apoferritin amyloid fibrils, reported by R. Jurado *et al.*³

 Table S1 The log-normal distribution parameters of contour length and network mesh size.

$$f(L,\mu,\sigma) = \frac{A}{L\sigma\sqrt{2\pi}}e^{-\frac{\left(\ln\left(L\right)-\mu\right)^2}{2\sigma^2}}$$

$$A \qquad \sigma \qquad \mu$$
Contour length 39.85 0.95 5.02
Network mesh size 39.99 0.95 4.91

References

- 1. C. Charbonneau, J. M. Kleijn and M. A. C. Stuart, Acs Nano, 2014, 8, 2328-2335.
- 2. Y. C. Lin, E. J. Petersson and Z. Fakhraai, Acs Nano, 2014, 8, 10178-10186.
- 3. R. Jurado, J. Adamcik, A. Sanchez-Ferrer, S. Bolisetty, R. Mezzenga and N. Galvez, *Biomacromolecules*, 2021, **22**, 2057-2066.