Cu₂O Nanoparticle-Catalyzed Tandem Reactions for

the Synthesis of Robust Polybenzoxazole

Huanqin Guan, Mengqi Shen, Cooro Harris, Honghong Lin, Kecheng Wei, Michael Morales,

Noah Bronowich and Shouheng Sun*

Department of Chemistry, Brown University, Providence, RI, 02912 (USA)

E-mail: ssun@brown.edu

SUPPLEMENTARY FIGURES

Figure S1. (Top) XRD patterns of 7 nm Cu NPs with standard PDF card (01-070-3038). (Bottom) TEM images and size distribution curves of (A) 9 nm (9.1 \pm 0.5) Cu NPs, (B) 12 nm (11.9 \pm 0.6) Cu NPs, and (C) 16 nm (15.9 \pm 0.7) Cu NPs. Scale bar: 100 nm.

Figure S2. Particle size distribution of Cu and Cu₂O NPs.

Figure S3. TEM images of various Cu₂O NPs. (A) 10 nm Cu₂O, (B) 13 nm Cu₂O, (C) 18 nm Cu₂O NPs. Scale bar: 50 nm.

Figure S4. XRD patterns of various Cu₂O NPs and Cu₂O standard PDF card (01-071-3645).

Figure S5. (A) TEM image and (B) XRD pattern of CuO NPs. Scale bar 50 nm. Standard PDF card (00-048-1548).

Catalyst	TOF (mol H ₂ mol catalyst ⁻¹ min ⁻¹)	Reference
Cu ₂ O/C	10.0	This study
Cu/WO _{2.72}	3.75	1
Cu ₂ O	0.2	2
Cu ₂ O/Co ₃ O ₄	2.63	3
Cu/rGO	3.61	4
CuCo/graphene	9.81	5
3.2 nm Ni/C	8.8	6
PVP stabilized Ni	4.5	7
Co@N-C-700	5.6	8
CoNi/graphene	16.4	9

Table S1. TOF values normalized to the overall metal content for non-noble metal-based catalystsin AB dehydrogenation reaction.

Entr	y AB (mmol)	Catalyst (mol%)	Temp. (°C)	Time (h)	Yield (%)
1	6	1	20	2	67
2	6	1	20	4	91
3	6	1	20	6	>99
4	6	1	20	8	>99
5	4	1	20	6	62
6	8	1	20	6	>99
7	6	0.5	20	12	73
8	6	0.1	20	12	51

Table S2. Reaction condition screening for tandem nitro hydrogenation reaction (yield was normalized to the original 1,5-diisopropoxy-2,4-dinitrobenzene amount).

Figure S6. Cu₂O/C catalyzed pre-PBO formation. (A) time-dependent and (B) temperaturedependent polymerization.

Figure S7. GPC of pre-PBO (blue) (and calibration curve (red)) made from tandem reactions catalyzed by different Cu₂O/C NPs of (A) 8 nm, (B) 10 nm, (C) 13 nm, and (D) 18 nm.

Figure S8. (A) TOF values of NP-catalyzed AB dehydrogenation reaction, and (B) yields of the amine product obtained from nitro-hydrogenation in the presence of different NP catalysts.

Figure S9. ¹H NMR of pre-PBO. Inset: assignment of the proton signals in the pre-PBO chemical structure (400 MHz, d₆-dimethyl sulfoxide).

Figure S10. ¹³C NMR of pre-PBO. Inset: assignment of the carbon signals in the pre-PBO chemical structure (101 MHz, d₆-dimethyl sulfoxide).

Figure S11. ATR-FTIR spectra of pre-PBO, PBO and Zylon with the assignment of benzoxazole ring (dashed lines).

Figure S12. GPC of pre-PBO synthesized by one pot method.

Figure S13. Recyclability tests of Cu_2O/C catalysts. (A) The polymerization degree (in the form of M_w) of pre-PBO obtained from each of the 5 reaction cycles. (B) TEM image of the Cu_2O/C catalyst after 5 reaction cycles. Scale bar: 50 nm.

Figure S14. (A) Dynamic TGA curve of pre-PBO and (B) static TGA curve of pre-PBO at 350 °C.

Sample	Initial tensile stress (MPa)	Final tensile stress after boiling water treatment (MPa)	Final tensile stress after boiling simulated seawater treatment (MPa)
As-prepared PBO (19 kDa)	55.2	52.4	49.2
Commercial Zylon (40 kDa)	60.2	42.7	32.7
PBO from AuPd work (11 kDa)	50.2	42.5	/

Table S3. Mechanical properties of as-prepared PBO, Zylon and PBO from previous work.¹⁰

Figure S15. Stability of PBO mechanical properties. The stress-strain curve for (A) as-prepared PBO and (B) commercial Zylon films.

REFERENCE

 M. Shen, H. Liu, C. Yu, Z. Yin, M. Muzzio, J. Li, Z. Xi, Y. Yu and S. Sun, J. Am. Chem. Soc. 2018, 140, 16460-16463. 2. S. B. Kalidindi, U. Sanyal and B. R. Jagirdar, *Phys. Chem. Chem. Phys.* 2008, **10**, 5870-5874.

3. Y. Yamada, K. Yano, Q. Xu and S. Fukuzumi, J. Phys. Chem. C 2010, 114, 16456-16462.

4. Y. Yang, Z.-H. Lu, Y. Hu, Z. Zhang, W. Shi, X. Chen and T. Wang, *RSC Adv.* 2014, **4**, 13749-13752.

5. J.-M. Yan, Z.-L. Wang, H.-L. Wang and Q. Jiang, J. Mater. Chem. 2012, 22, 10990-10993.

6. Ö. Metin, V. Mazumder, S. Özkar and S. Sun, J. Am. Chem. Soc. 2010, **132**, 1468-1469.

7. T. Umegaki, J.-M. Yan, X.-B. Zhang, H. Shioyama, N. Kuriyama and Q. Xu, *Int. J. Hydrogen Energy* 2009, **34**, 3816-3822.

H. Wang, Y. Zhao, F. Cheng, Z. Tao and J. Chen, *Catal. Sci. Technol.* 2016, 6, 3443-3448.
W. Feng, L. Yang, N. Cao, C. Du, H. Dai, W. Luo and G. Cheng, *Int. J. Hydrogen Energy* 2014, 39, 3371-3380.

M. Shen, C. Yu, H. Guan, X. Dong, C. Harris, Z. Xiao, Z. Yin, M. Muzzio, H. Lin, J. R.
Robinson, V. L. Colvin and S. Sun, *J. Am. Chem. Soc.* 2021, **143**, 2115-2122.