Supporting Information

Ultra-stable potassium storage and hybrid mechanism of perovskite

fluoride KFeF₃/rGO

Shuo Wang, Fei Chen, Li-ming Zhang, Yi-xuan Li, Nai-qing Ren, Kuo Cao, Jing-

chao Xiao, Chun-hua Chen*

CAS Key Laboratory of Materials for Energy Conversions, Department of Materials

Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science

and Technology, University of Science and Technology of China, Anhui Hefei 230026,

China

Corresponding authors: E-mail: <u>cchchen@ustc.edu.cn</u>; Phone: +86-551-63606971; Fax: (+86)551-63601592.

Fig. S1. XRD patterns of the obtained intermediate products after the solvothermal procedure.

Fig. S2. The morphology characterization of the intermediate products: SEM (a), TEM (b) and HRTEM (c) images of KFeF₃-bulk; while (d-f) and (g-i) are corresponding to KFeF₃ and KFeF₃/GO, respectively.

Fig. S3. Raman spectra of the samples (a) and their pore size distribution analyzed (b).

Fig. S4. XPS K 2p and F 1s spectra of KFeF₃/rGO-PVA-500 (a, b), KFeF₃-bulk (c, d) and their survey spectra (e).

Fig. S5. The CV curves of $KFeF_3/rGO-PVA-500$ (a), $KFeF_3-PVA-500$ (b) and $KFeF_3-500$ (c) at a scan rate of 0.1 mV s⁻¹.

Fig. S6. The charge/discharge voltage profiles of $KFeF_3$ -PVA-500 (a) and $KFeF_3$ -500 (b) during the initial 3 cycles at 20 mA g⁻¹.

Fig. S7. The detailed schematic diagram of a single-step GITT experiment during charging (a); the GITT curves and corresponding ${}^{D}{}_{K}{}^{+}$ of each current pulse-relaxation step in KFeF₃-PVA-500 (b) and KFeF₃-500 (c); and the K⁺ diffusion coefficient comparisons in charging process (d).

The apparent K⁺ diffusion coefficients were calculated by the following equation¹:

$$D_{K^{+}} = \frac{4}{\pi\tau} (\frac{n_{m}V_{m}}{S})^{2} (\frac{\Delta E_{s}}{\Delta E_{\tau}})^{2} \qquad \tau \ll \frac{L^{2}}{D_{K^{+}}}$$
(1)

As shown in Figure S7a, τ , n_m , V_m and L are the duration of current pulse, the number of moles, molar volume of the active materials and the thickness of the loading slurry, respectively. ΔE_s represents the difference between the equilibrium voltages before and after the pulse. ΔE_{τ} is the variation of cell voltage during a titration step.

Fig. S8. The circuit model employed in EIS fitting.

Table S1. The powder electronic conductivity of the final sintered products.

sample	Powder electronic conductivity, S cm ⁻¹	
KFeF ₃ -500	<5 × 10 ⁻⁶	
KFeF ₃ -PVA-500	<5 × 10 ⁻⁶	
KFeF ₃ /rGO-PVA-500	4.8×10 ⁻²	

Table S2. The ICP results of KFeF₃-bulk and KFeF₃/rGO-PVA-500.

sample	Atomic ratio K/Fe	
KFeF ₃ -bulk	1.00	
KFeF₃/rGO-PVA-500	0.99	

Table S3. Comparison of the long cycle stability of KFeF₃/rGO-PVA-500 with other PIBs cathodes.

	Materials	Materials Capacity retention	
1	KFeF ₃ /KB	93%, 80 mA g ⁻¹ , 100th	[2]
2	Co-doped KMnF ₃	88%, 40 mA g ⁻¹ ,60th	[3]
3	K _{0.44} Ni _{0.22} Mn _{0.78} O ₂	67%, 200 mA g ⁻¹ ,500th	[4]
4	δ -MnO ₂ /KMnF ₃	73%, 100 mA g ⁻¹ ,200th [5]	
5	O-doped KMnF₃@C	83%, 100 mA g ⁻¹ ,200th [6]	
6	K _{0.83} V ₂ O ₅	82%, 100 mA g ⁻¹ ,200th ⁻¹ [7]	
7	KFeF ₃ /rGO-PVA-500	94%, 200 mA g ⁻¹ ,1000th This work	

Table S4. The ICP results of KFeF₃/rGO-PVA-500 at different electrochemical states.

KFeF ₃ /rGO-PVA-500	Atomic ratio K/Fe	
pristine	0.99	
Charged to 4.2 V	0.71	
Discharged to 1.2 V	1.46	

Table S5. The EIS fitting results of the samples.

-			
	sample	R _s , Ω	R _{ct} , Ω
-	KFeF ₃ -500	18	3785
	KFeF ₃ -PVA-500	15	1804
	KFeF ₃ /rGO-PVA-500	8	708

References:

- 1. W. Zhang, H. X. Li, Z. A. Zhang, M. Xu, Y. Q. Lai, S. L. Chou, Small 2020, 16, 2001524.
- D. P. Cao, C. L. Yin, D. R. Shi, Z. W. Fu, J. C. Zhang, C. L. Li, Adv. Funct. Mater. 2017, 27, 1701130.
- S. Y. Wang, B. Cui, Q. C. Zhuang, Y. L. Shi, H. Zheng, J. Electrochem. Soc. 2019, 166, A1819-A1826.
- 4. X. Zhang, Y. Yang, X. Qu, Z. Wei, G. Sun, K. Zheng, H. Yu, F. Du, Adv. Funct. Mater. 2019, 29, 1905679.
- S. Y. Wang, Y. L. Cui, B. Cui, Q. C. Zhuang, B. Li, H. Zheng, Z. C. Ju, Adv. Mater. Interfaces 2019, 6, 1901362.
- 6. S. Wang, Y. Chen, B. Cui, B. Li, S. Wang, Y. Cui, Z. Ju, Q. Zhuang, Appl. Surf. Sci. 2020, 514, 145954.
- Y. C. Zhang, X. G. Niu, L. L. Tan, L. Q. Deng, S. F. Jin, L. Zeng, H. Xu, Y. J. Zhu, ACS Appl. Mater. & Inter. 2020, 12, 9332-9340.