Defect-controlled halogenating properties of lanthanide-doped

ceria nanozymes

Phil Opitz,^{1‡} Olga Jegel,^{1‡} Jamal Nasir,² Tobias Rios-Studer,¹ Athanasios Gazanis,³ Dang-Hieu Pham,¹ Katrin Domke,⁴ Ralf Heermann,³ Jörn Schmedt auf der Günne,^{2*} Wolfgang Tremel^{1*}

- ¹ Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany, tremel@uni-mainz.de
- ² University of Siegen, Faculty IV: School of Science and Technology, Department of Chemistry and Biology, Adolf-Reichwein-Straße 2, D-57076 Siegen, Germany, <u>gunnej@chemie.uni-siegen.de</u>
- ³ Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Biotechnologie, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany, <u>heermann@uni-mainz.de</u>
- ⁴ Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany

Table of Contents

Fig. S1. a) TEM image and b) X-ray diffractogram of hydrothermally prepared CeO_2 nanocrystals......2 Fig. S2. SEM EDX mapping of Tb-doped CeO₂ nanocrystals. a) X-rays for the Ce L line b) X-Fig. S3. SEM EDX mapping of the Pr-doped nanocrystals. a) X-rays for the Ce L line b) X-Fig. S4. X-ray photoelectron spectroscopy spectra of CeO₂-ac (1), CeO₂-bm (2), Ce_{0.9}Tb_{0.1}O_{1.95} (3) and $Ce_{0.9}Pr_{0.1}O_{1.95}$ (4). a) shows the survey spectra of the samples. b) shows the Ce 3d and Fig. S5. FTIR spectrum of ball milled CeO₂. The bands marked with numbers are shown in Table S1.....7 Fig. S6. Best Lorentz fit (red line) of the Raman spectra of CeO₂ nanocrystals synthesized (a) hydrothermally and (b) by ball milling. The full width at half maximum (fwhm) of the main band (43.3 cm⁻¹) of the hydrothermally prepared CeO₂ nanocrystals is significantly larger than the band (25.7 cm⁻¹) of the ball-milled nanocrystals. This indicates a higher disorder of hydrothermally prepared nanocrystals and is most probably explained by the anisotropic crystal Fig. S7. Best Lorentz fit (red line) of the Raman spectra of the (a) Pr- and (b) Tb-doped CeO₂ Fig. S8. Hill-Fit of undoped and Pr- and Tb-doped CeO₂ nanocrystals......10 Fig. S9. Digital photographs of CeO_2 (bm & ht), $Ce_{0.9}Tb_{0.1}O_{1.95}$ and $Ce_{0.9}Pr_{0.1}O_{1.95}$ powders.11 **Fig. S10.** X-ray powder diffractograms showing the miscibility of CeO_2 with a) (Tb³⁺) and b)

Table S1 . Table of the signals in the XPS survey spectra in Fig. S4.	6
Table S2. Assignment of the FTIR vibrational bands. The first five bands ar	e assigned to
chemisorbed CO2. The sixth broad band is assigned to OH groups of free and ad	sorbed water.
	7
Table S3. Assignment of Raman spectra.	9

Fig. S1. a) TEM image and b) X-ray diffractogram of hydrothermally prepared CeO₂ nanocrystals.

Fig. S2. SEM EDX mapping of Tb-doped CeO_2 nanocrystals. a) X-rays for the Ce L line b) X-rays for the Tb L line.

Fig. S3. SEM EDX mapping of the Pr-doped nanocrystals. a) X-rays for the Ce L line b) X-rays for the Pr L line.

Fig. S4. X-ray photoelectron spectroscopy spectra of CeO_2 -ht (1), CeO_2 -bm (2), $Ce_{0.9}Tb_{0.1}O_{1.95}$ (3) and $Ce_{0.9}Pr_{0.1}O_{1.95}$ (4). a) Survey spectra. b) Ce 3d and c) the O 1s regions.¹⁻³

Peak Energy / eV	Element	Peak Assignment	Shortcut
40	Au 5p	-	•
85	Au 4f		•
88	Au 4f	-	•
122	Ce 4d	Ce(IV) in CeO ₂	-
125	Ce 4d	Ce(IV) in CeO ₂	-
155	Tb 4d	-	-
285	C 1s	-	-
~340	Au 4d	-	•
~355	Au 4d	-	•
530	O 1s	Ce(IV)-O	0'
532	O 1s	Ce(III)-O and adsorbed – CO3 ²⁻ species	0"
~560	Au 4p	-	♦
~650	Au 4p	-	•
~770	Au 4s	-	•
883	Ce 3d _{5/2}	Ce(IV) in CeO ₂	V
885	Ce 3d _{5/2}	Ce(III) in CeO _{2-x}	v'
889	Ce 3d _{5/2}	Ce(IV) in CeO ₂	v"
899	Ce 3d _{5/2}	Ce(IV) in CeO ₂	v'''
901	Ce 3d _{3/2}	Ce(IV) in CeO ₂	u
904	Ce 3d _{3/2}	Ce(III) in CeO _{2-x}	u'
908	Ce 3d _{3/2}	Ce(IV) in CeO ₂	u''
917	Ce 3d _{3/2}	Ce(IV) in CeO ₂	u'''
933	Pr 3d _{5/2}	-	-
954	Pr 3d _{3/2}	-	-

Table S1. Table of the signal positions in XPS survey spectra in Fig. S4.

Fig. S5. FTIR spectrum of ball milled CeO₂. The bands marked with numbers are shown in Table S1.

Table S2. Assignment of the FTIR vibrational bands. The first five bands are assigned to chemisorbed CO_2 . The sixth broad band is assigned to OH groups of free and adsorbed water.

No. of FTIR band	Position(cm ⁻¹)	Assignments ⁴⁻⁶	
1	851	Out of-plane vibration of the	
		surface carbonate CO ₃ ²⁻ group,	
2	1058	unidentate CO ₃ ²⁻	
3	1341	unidentate CO ₃ ²⁻	
4	1534	bidentate CO ₃ ²⁻	
5	1633	bending vibration of water	
6	2800-3650	υ - _{OH} of free, adsorbed and	
		chemisorbed water	

Fig. S6. Best Lorentz fit (red line) of the Raman spectra of CeO_2 nanocrystals synthesized (a) hydrothermally and (b) by ball milling. The full width at half maximum (fwhm) of the main band (43.3 cm⁻¹) of the hydrothermally prepared CeO_2 nanocrystals is significantly larger than the band (25.7 cm⁻¹) of the ball-milled nanocrystals. This indicates a higher disorder of hydrothermally prepared nanocrystals and is most probably explained by the anisotropic crystal morphology.

Fig. S7. Best Lorentz fit (red line) of the Raman spectra of the (a) Pr- and (b) Tb-doped CeO₂ nanocrystals.

Table S3.	Assignment	of Raman	spectra.
-----------	------------	----------	----------

	Band 1(cm ⁻¹)	Band 2 (cm ⁻¹)	Band 3(cm ⁻¹)	Band 4(cm ⁻¹)
CeO ₂ hydrothermally prepared	244.2	424.2	461.0	598.0
CeO ₂ ball milled	258.3	440.9	460.0	603.0
$Ce_{0.9}Pr_{0.1}O_{1.95}$	-	432.8	456.1	580.9
$Ce_{0.9}Tb_{0.1}O_{1.95}$	-	427.7	456.1	581.4
Assignments ⁷⁻¹⁰	TA/TO	F _{2g}	F _{2g}	D_1

Fig. S8. Hill-Fit of undoped and Pr- and Tb-doped CeO₂ nanocrystals.

Fig. S9. Digital photographs of CeO_2 (bm and ht), $Ce_{0.9}Tb_{0.1}O_{1.95}$ and $Ce_{0.9}Pr_{0.1}O_{1.95}$ powders.

Fig. S10. X-ray powder diffractograms showing the miscibility of CeO_2 with a) (Tb³⁺) and b) (Pr³⁺).

References

- R. Valiokas, L. Malysheva, A. Onipko, H.-H. Lee, Z. Ruzele, S. Svedhem, S. C.T. Svensson, U. Gelius, B. Liedberg, J. Electr. Spectr. Rel. Phenom. 2009, 172, 9–20
- (2) M. M. Natile and A. Glisenti, Surf. Sci. Spectra 2006 13, 17.
- (3) Y. Sohn, Ceram. Int. 2014, 40, 13803-13811.
- (4) C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya, T. Onishi, J. Chem. Soc., Faraday Trans. 1989, **85**, 929.
- (5) S. Chen, T. Cao, Y. Gao, D. Li, F. Xiong, W. Huang, J. Phys. Chem. C 2016, **120**, 21472–21485.
- (6) G. N. Vayssilov, M. Mihaylov, P. S. Petkov, K. I. Hadjiivanov, K. M. Neyman, J. Phys. Chem. C 2011, **115**, 23435–23454.
- (7) W. H. Weber, K. C. Hass, J. R. McBride, Phys. Rev. B 1993, 48, 178-185.
- (8) C. Schilling, A. Hofmann, C. Hess, M. Veron, J. Phys. Chem. C 2017, 16, 20834–20849.
- (9) O. Kraynis, I. Lubomirsky, T. Livneh, J. Phys. Chem. C 2019, 123, 24111–24117.
- (10) M. Gupta, A. Kumar, A. Sagdeo, P. R. Sagdeo, J. Phys. Chem. C 2021, 125, 2648–2658.