Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Supporting information

Electrical and chemical properties of vacancy-ordered lead free layered double perovskite nanoparticles

Amal Sawahreh¹, Tal Binyamin¹, Jie Jiang², Oded Millo³, Oren Goldberg³, Doron Azulay³, Ruth Pachter², Lioz Etgar^{1, *}

¹ Institute of Chemistry, Casali Center for Applied Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

² Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, U.S.A.

³ Racah Institute of Physics, The Hebrew University of Jerusalem and the Center for Nanoscience and Nanotechnology, Jerusalem 91904, Israel.

* Lioz.etgar@mail.huji.ac.il

x	Manganese acetate [mmol]	Cadmium acetate [mmol]
x=1	0	0.18
x=0.8	0.036	0.144
x=0.7	0.054	0.126
x=0.5	0.09	0.09
x=0	0.18	0

Table S1: moles of materials use to synthesize Cs₄Cd_xMn_{1-x}Bi₂X₁₂

Figure S1: HR-TEM characterization of DLP (x=1) nanoparticle in two different orientations; (a)zone axis: (1 0 1), (b) zone axis: (1 -1 0). The size distribution histograms of x=1, (c) in zone axis (101) the average length is^{18.1 ± 1.9nm}, (d) in zone axis (1 -1 0) the average edge length is $17.5 \pm 3.1nm$, (f) the average width is $7.7 \pm 1.8nm$.

Table S2: Miller Indices and d-spacing for the different FFT patterns

		$\begin{array}{c} Cs_4 CdBi_2 Cl_{12} \ -zone \ axis \ [1 \ 0 \\ 1] \ (figure \ 1c) \end{array}$			$Cs_4CdBi_2Cl_{12-\text{zone axis}} [1 - 1]$ 0] (figure 1e)			
(h k l)	d- spacing [nm]	1/d- spacing [1/nm]	(h k l)	d- spacing [nm]	1/d- spacing [1/nm]	(h k l)	d- spacing [nm]	1/d- spacing [1/nm]
113	0.362	2.762	110	0.381	2.624	110	0.380	2.631
-1 3 2	0.255	3.921	208	0.267	3.733	1 0 2	0.622	1.607
						220	0.199	5.024

Figure S2: (a) high magnification STEM image $Cs_4Cd_{0.8}Mn_{0.2}Bi_2Cl_{12}$ (x=0.8), (b), (c), (d), (e), (f) STEM-EDS element maps for Cs, Cl, Cd, Bi, Mn; squares show the presence of side product Cs3BiCl6

Figure S3: TEM characterization of $Cs_4Cd_{0.7}Mn_{0.3}Bi_2Cl_{12}$ (x=0.7) in different magnifications.

	VBM (ev)	E0 (ev)	Work function (ev)
X=0.8	3.16	14.67	6.53
X=0.5	1.93	14.04	7.16

Table S3: VBM, E0 and work function measured by UPS analysis

Density Functional Theory (DFT) Calculations

<u>Computational details.</u> DFT calculations were carried out with the Vienna ab initio simulation package VASP 5.4.¹ The Kohn-Sham equations are solved using a plane wave basis set with an energy cutoff of 350 eV, and the projector augmented-wave (PAW) potential was applied.² A $2\times2\times2$ k-point sampling was used for the $2\times2\times1$ Cs₄MnBi₂Cl₁₂ supercell cell. The trigonal *R*3*m* space group was assumed.³ The initial spin configuration

for $Cs_4MnBi_2Cl_{12}$ was set as antiferromagnetic state where spins on Mn are parallel along lattice \vec{b} and antiparallel along lattice \vec{a} .⁴ Upon Cd substitutional doping, the initial spin on dopant Cd is set to zero. The structures were optimized using the PBE functional⁵ and the zero damping D3 correction of Grimme,⁶ as inclusion of London dispersion in the functional for treating halide perovskites was emphasized,⁷ and previously applied.⁸ Geometries were fully relaxed regarding lattice parameters and interatomic distances until forces were less than 0.01 eV/Å. In both optimization and electronic structure calculations, spin polarization was included. In the electronic structure calculations for pristine Cs₄MnBi₂Cl₁₂, the PBE revised for solids (PBEsol) exchange-correction is adopted.⁹

Figure S4: Two tunneling spectra measured on the NPs marked by asterisk with corresponding colors shown in the topographic image presented in the inset. Both NPs are ~10 nm in lateral dimensions.

Figure S4: Two dI/dV-V tunneling spectra measured on two different NPs marked by asterisks with corresponding colors shown in the 40×40 nm² STM topographic image presented in inset.

Figure S5: Two I-V characteristics measured on the Au substrate, aside of the NPs, after dropcasting the NPs in chloroform solution.

Figure S6: XRD pattern of the nanoparticles which indicate the presence of the desired phases $(Cs_4Cd_xMn_{1-x}Bi_2Cl_{12})$ and Cs_3BiCl_6 .

(c) ^{h k l}	d-spacing [nm]
(0 1 1)	0.640
(1 1 0)	0.377
(0 2 5)	0.309
(1 2 4)	0.241
(0 3 0)	0.218
(2 2 0)	0.190
(0 4 1)	0.164
(0 4 4)	0.161
(1 3 4)	0.143

Figure S7: HR-TEM image and the corresponding electron diffractions of Cs4CdBi2Cl12 NPs. (a) Zone axis [-1 -1 3] and (b) electron diffraction on larger area and the (c) corresponding h k l crystallographic planes.

References

- 1. Hafner, J.; Kresse, G., *The Vienna Ab-initio Simulation Program VASP: An efficient and versatile tool for studying the structural, dynamic, and electronic properties of materials.* 1997; p 69-82.
- 2. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. *Physical Review B* **1999**, *59* (3), 1758-1775.
- 3. Yang, H.; Shi, W.; Cai, T.; Hills-Kimball, K.; Liu, Z.; Dube, L.; Chen, O., Synthesis of lead-free Cs 4 (Cd 1− x Mn x) Bi 2 Cl 12 (0≤ x≤ 1) layered double perovskite nanocrystals with controlled Mn–Mn coupling interaction. *Nanoscale* **2020**, *12* (45), 23191-23199.
- 4. Vargas, B.; Torres-Cadena, R. l.; Reyes-Castillo, D. T.; Rodriguez-Hernandez, J.; Gembicky, M.; Menéndez-Proupin, E.; Solis-Ibarra, D., Chemical diversity in lead-free, layered double perovskites: a combined experimental and computational approach. *Chemistry of Materials* **2019**, *32* (1), 424-429.
- 5. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. *Physical Review Letters* **1996**, 77 (18), 3865-3868.
- 6. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *The Journal of Chemical Physics* **2010**, *132* (15), 154104.
- 7. Beck, H.; Gehrmann, C.; Egger, D. A., Structure and binding in halide perovskites: Analysis of static and dynamic effects from dispersion-corrected density functional theory. *APL Materials* **2019**, *7* (2), 021108.
- 8. Zhang, L.; Liang, W., How the structures and properties of two-dimensional layered perovskites MAPbI3 and CsPbI3 vary with the number of layers. *The journal of physical chemistry letters* **2017**, *8* (7), 1517-1523.
- 9. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces. *Physical Review Letters* **2008**, *100* (13), 136406.
- 10. Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F., Linear optical properties in the projector-augmented wave methodology. *Physical Review B* **2006**, *73* (4), 045112.