Supplemental Material
Lattice dynamics of Ge$_{1-x}$Sn$_x$ alloy nanowires

Sreyan Raha,¹ Subhajit Biswas,² Jessica Doherty,² Prasanna Kumar Mondal,³ Justin D Holmes,² and Achintya Singha¹

¹Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra road, Kolkata 700009, India
²School of Chemistry & Advanced Materials and Bioengineering Research (AMBER) Centre, University College Cork, Cork, T12 YN60, Ireland
³Department of Physics, Surendranath College, Kolkata 700009, India

*achintya@jbose.ac.in
FIG. S1. Schematic diagram representing all Raman modes of Ge and Ge$_{1-x}$Sn$_x$ NWs with $x \geq 0.06$ correlated to representative elemental maps.
FIG. S2. Raman spectra [discrete points are the experimental data and red solid curve represent the fitted spectra] of Ge$_{1-x}$Sn$_x$ NWs with (a) $x = 0$, (b) $x = 0.01$, (c) $x = 0.06$, (d) $x = 0.08$ measured at various laser powers (0.2 mW to 2.30 mW). Each spectrum is fitted with Lorentzian functions where magenta, blue and green solid curves represent Ge-Ge F_{2g} mode, Ge-Ge relaxed mode and Ge-Ge compressed mode respectively.
FIG. S3. Raman spectra [discrete points are the experimental data and red solid curve represent the fitted spectra] of Ge$_{1-x}$Sn$_x$ NWs with (a) $x = 0$, (b) $x = 0.01$, (c) $x = 0.06$, (d) $x = 0.08$ measured at various temperatures (83 K to 523 K). Each spectrum is fitted with Lorentzian functions where magenta, blue and green solid curves represent Ge-Ge F$_{2g}$ mode, Ge-Ge relaxed mode and Ge-Ge compressed mode respectively.