Supplementary information Lattice dynamics of $\text{Ge}_{1-x}\text{Sn}_x$ alloy nanowires

Sreyan Raha,¹ Subhajit Biswas,² Jessica Doherty,² Prasanna Kumar Mondal,³ Justin D. Holmes,² and Achintya Singha^{1, *}

¹Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra road, Kolkata 700009, India ²School of Chemistry & Advanced Materials and Bioengineering Research (AMBER) Centre,

University College Cork, Cork, T12 YN60, Ireland

³Department of Physics, Surendranath College, Kolkata 700009, India

^{*} achintya@jcbose.ac.in

FIG. S1. Schematic diagram representing all Raman modes of Ge and $\text{Ge}_{1-x}\text{Sn}_x$ NWs with $x \ge 0.06$ correlated to representative elemental maps.

FIG. S2. Raman spectra [discrete points are the experimental data and red solid curve represent the fitted spectra] of $\text{Ge}_{1-x}\text{Sn}_x$ NWs with (a) x = 0, (b) x = 0.01, (c) x = 0.06, (d) x = 0.08 measured at various laser powers (0.02 mW to 2.30 mW). Each spectrum is fitted with Lorentzian functions where magenta, blue and green solid curves represent Ge-Ge F_{2g} mode, Ge-Ge relaxed mode and Ge-Ge compressed mode respectively.

FIG. S3. Raman spectra [discrete points are the experimental data and red solid curve represent the fitted spectra] of $\text{Ge}_{1-x}\text{Sn}_x$ NWs with (a) x = 0, (b) x = 0.01, (c) x = 0.06, (d) x = 0.08 measured at various temperatures (83 K to 523 K). Each spectrum is fitted with Lorentzian functions where magenta, blue and green solid curves represent Ge-Ge F_{2g} mode, Ge-Ge relaxed mode and Ge-Ge compressed mode respectively.