Egg-Yolk Core-Shell Mesoporous Silica Nanoparticles for High Doxorubicin Loading

and Delivery to Prostate Cancer Cells

Steffi Tiburcius¹, Kannan Krishnan¹, Linta Jose¹, Vaishwik Patel¹, Arnab Ghosh², CI

Sathish¹, Judith Weidenhofer², Jae-Hun Yang¹, Nicole M. Verrills², Ajay Karakoti^{1*}, Ajayan

Vinu^{1*}

¹Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, 2308, NSW, Australia.

²School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, 2308, NSW, Australia.

*Corresponding Authors: ajay.karakoti@newcastle.edu.au, ajayan.vinu@newcastle.edu.au

Supplementary Information

Material	SA _{BET}	\mathbf{PV}	PD
	(m² g-1)	(cm ³ g ⁻¹)	(nm)
MSN@SiO ₂	1230	0.64	2.3
NH ₂ -MSN@SiO ₂	411	0.38	2.3
TE-@MS-10.9	569	0.36	2.3
TE-@MS-11	698	0.38	2.3
TE-@MS-11.2	610	0.4	2.3
TE-@MS-11.5	315	0.42	12.93
TO-@MS-10.9	627	1.11	2.3
TO-@MS-11	736	0.51	2.2
TO-@MS-11.2	595	0.4	2.3
TO-@MS-11.5	422	0.4	2.3

Table 1S. Textural properties of the synthesised materials

Note: The numerical values are rounded off to the nearest significant figure, SA_{BET} – Brunauer Emmet Teller surface area, PV – Pore volume and PD – Pore diameter.

Table.2S. Zeta potential measurements of the synthesised materials

MSN@SiO ₂	-26.47
TE-@MS-10.9	-35
TE-@MS-11	-34.29
TE-@MS-11.2	-34.75
TE-@MS-11.5	-43.43
TO-@MS-10.9	-29.43
TO-@MS-11	-29.43
TO-@MS-11.2	-28.78
TO-@MS-11.5	-31.39

Figure SI.1. Pore size distributions of **A**) a) $MSN@SiO_2$ and b) $NH_2-MSN@SiO_2$; **B**) c) TE-@MS-10.9, d) TE-@MS-11.0, e) TE-@MS-11.2 and f) TE-@MS-11.5; **C**) TO-@MS-x, g) TO-@MS-10.9, h) TO-@MS-11, i) TO-@MS-11.2 and j) TO-@MS-11.5

@MS-11.5

Figure SI.3. TEM images of A) MSN@SiO2 at low resolution and B) MSN@SiO2 at high

resolution

Figure SI.4. SEM image of a) TE-@MS-11, and corresponding SEM-EDS elemental mapping b) Nitrogen c) Silicon and d) Oxygen; SEM image of e) TO-@MS-11 and corresponding elemental mapping f) Nitrogen g) Silicon and h) Oxygen

Figure SI.5. Cellular uptake of particles by LNCaP Cells A) cellular uptake studies by flow cytometry of a) MSN@SiO₂-Dox b) TE-@MS-Dox c) TO-@MS-Dox.

Figure SI.6 Invitro cytotoxicity studies of Dox **a**) PC3 at 24 h (blue), 48 h (yellow) **b**) LNCaP at 24 h (green) and 48 h (purple)