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1. Compression induced wrinkles

Figure S1. Fabrication of wrinkled As2S3 flakes. The wrinkles are formed after 
releasing the pre-bended elastic substrate. 

2. Polarization-resolved transmission spectroscopy

Figure S2. Angular-dependent optical transmission (T/T0) of As2S3 flakes with wrinkles 
perpendicular to the (a) AC and (b) ZZ directions as shown in Figure 2. T is normalized 
to the transmission of the substrate, T0. The angle is defined as the angle between the 
linear polarizer and the horizontal directions in Fig. 2a and Fig.2b respectively. The 
transmission is plotted radially according to the axes shown on the left of each plot.  
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3. Elastic modulus for wrinkling 
A thin plate under in-plane compression and supported by a soft elastic substrate 

to which it adheres fails by Euler buckling into a sinusoidal wrinkling. The theory for 
an isotropic plate is fully worked out1, but is given in terms of engineering moduli such 
as Young’s modulus and the plane-strain modulus. For a 2D material such as graphene, 
it can also be convenient to express the theory in terms of 2D elastic moduli. Extending 
the theory to a general anisotropic plate using these quantities can be very confusing, 
and so we explain the analysis here from first principles.

3.1 Notation and elementary relationships 

Stress, strain and the relationships between them, the elastic stiffness constants, 
are tensors, , , and c, both in 3D and in 2D. For convenience, we use Voigt notation 
in which in 3D, second-rank tensor elements with two subscripts ij, with i, j = 1-3 or x, 
y, z, are written with one subscript I = 1-6 for xx, yy, zz, yz, zx, xy, and similarly four 
subscripts ijkl are condensed to IJ). We note that there are no shear stresses in the 
problems addressed here, so we need only the Voigt subscripts ranging over 1-3. The 
full description of the infinitesimal (linear) elasticity of an isotropic material is 
illustrated by finding Young’s modulus where we have only a longitudinal (x-direction) 
stress, a longitudinal strain and two perpendicular strains due to Poisson’s ratio:

 (S1)
(00) = (𝑐11 𝑐12 𝑐12

𝑐12 𝑐11 𝑐12
𝑐12 𝑐12 𝑐11

)( ⟂

⟂
)

Taking the third line, we have 

 (S2)0 = 𝑐12 + (𝑐11 + 𝑐12)⟂

from which the Poisson’s ratio is

 (S3)
 =‒

⟂


=

𝑐12

𝑐11 + 𝑐12

From the first line of Eq. S1 and using Eq. S3, we have 

 (S4)
 = 𝑐11 + 2𝑐12⟂ = (𝑐11 ‒

2𝑐 2
12

𝑐11 + 𝑐12)
and the quantity in brackets can be recognised as the Young’s modulus E. 
These expressions can be inverted, so that if we have E and , we may obtain c11 and 
c12 as 

 (S5)
𝑐11 =

1 ‒ 

1 ‒  ‒ 22
𝐸   𝑎𝑛𝑑   𝑐12 =

‒ 

1 ‒  ‒ 22
𝐸

The linear elastic properties of the isotropic material are fully described by the two 
parameters c11 and c12, or by E and . Equally, if we set up the situations in which stress 

and strain are related by the bulk modulus B, the plane-strain modulus , or the shear �̅�
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modulus G = c44, or any other moduli, we can find how these are related to c11 and c12. 
We can recover the well-known relationships between these quantities such as 

, which may also be written as G = c44 = ½(c11 – c12). 𝐺 = ½𝐸/(1 + )

3.2 Anisotropic elasticity

Crystals have lower symmetry than isotropic or spherical and require more 
constants to define their elasticity. In cubic symmetry, c11, c12 and c44 are independent 
constants; the relationship given in the previous section for G, E and  does not apply, 
and the anisotropy may be quantified by the constant C = 2c44 – c11 + c12. In 
orthorhombic symmetry, as we have here, and in the absence of shear strains, we require 
the six elastic constants c11, c22, c33, c12, c13 and c23 (or, equivalently, three Young’s 
moduli and three Poisson’s ratios or other combinations of six engineering constants). 

Note that rewriting Eq.S1 with these six elastic constants and obtaining Young’s 
modulus for a strain  = (1, 0, 0) now requires solving the second and third lines 
simultaneously for the two Poisson’s ratios 12 and 13 that give rise to 2 and 3. They 
are not simple, but they are of the same form and related by interchange of subscripts 2 
and 3, and so we display only one of them, 

 (S6)
12 =‒

𝑐33𝑐12 ‒ 𝑐23𝑐13

𝑐22𝑐33 ‒ 𝑐 2
23

Young’s modulus for strain in the x direction is then Yx = c11 – c1212 – c1313. It is 
clearly no simple matter to obtain one of the engineering moduli from known values of 
six others.    

3.3 Plane stress and plane strain 

Engineering problems often simplify to so-called plane-stress problems or 
plane-strain problems, and it is therefore common to encounter plane-stress or plane-
strain moduli accordingly. The definition of plane stress (strain) is that all stresses 
(strains) are in the x-y plane, and the normal (z-direction) stress (strain) is zero. When 
a 2D material is exfoliated and placed on a substrate, it is rare that it has zero in-plane 
stress or strain. However, there is zero stress normal to the substrate, so this is a plane 
stress problem, with

 (S7)
(1
2
0 ) = (𝑐11 𝑐12 𝑐13

𝑐12 𝑐22 𝑐23
𝑐13 𝑐23 𝑐33

)(1
2
⟂

)
On the other hand, when a 2D flake is bent about an axis in the y-direction, it is 

under tension (xx) around the outside of the bend, and under compression around the 
inside. This sets up stresses in the y-direction, compressive and tensile respectively, and 
a shear stress yz within the flake, which tends to cause anticlastic curvature. However, 
when the flake is much wider than its thickness, these effects can be neglected. The 
outcome in this case is that the strain in the y-direction vanishes, and so this becomes a 
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plane-strain problem, with

 (S8)
( 𝑦

0 ) = (𝑐11 𝑐12 𝑐13
𝑐12 𝑐22 𝑐23
𝑐13 𝑐23 𝑐33

)( 0⟂
)

from which the bending stiffness may be calculated. The third line gives the relevant 
plane-strain Poisson’s ratio, as 

 (S9)
13 =‒

⟂


=

𝑐13

𝑐33

and then the first line gives the relevant modulus, by 

 (S10)
 = 𝑐11 + 𝑐13⟂ = (𝑐11 ‒

𝑐 2
13

𝑐33)
The standard solution for the bending stiffness D of an isotropic plate is 

(S11)
𝐷 =

𝐸ℎ3

12(1 ‒ 2)

and the quantity E/(1 – 2) =  is often referred to as the plane-strain modulus. 
𝑐11 ‒

𝑐 2
12

𝑐11

So the two plane-strain moduli for the orthorhombic symmetry are quite simple.  

3.4. Anisotropic materials in 2D elasticity theory 

As the archetypical 2D material, monolayer graphene has its carbon nuclei in a 
single (x-y) plane. Since the thickness a33, the strain 33 and the modulus c33 of a crystal 
in the z-direction are conventionally defined by reference to nuclear z-coordinates, this 
causes some confusion in considering these quantities in monolayer graphene. In 
graphite, however, there is little or no interaction between in-plane and out-of-plane 
deformation, i.e. c13 = c23 = 0, to within experimental and theoretical resolution. So it is 
convenient to ignore all subscripts 3 in the tensor elasticity theory. In considering a 
monolayer, to attribute to it the quantities that it has in graphite in GPa, divided by the 

layer spacing in graphite, e.g.  in units of Nm–1, and 1 likewise, while 1 𝑐2𝐷
11 = 𝑐11𝑎33

is unchanged – and then to refrain from mentioning the thickness in any analysis. This 
makes the bending stiffness of monolayer graphene independent of cij, which is correct. 
It is, however, an approach which does not work so directly for other 2D materials such 
as monolayer MoS2 or As2S3, both because they do have nuclei out-of-plane, and 
because they do have non-zero c13 and c23. It would be incorrect to take the separation 
between the nuclei above and below the centre plane as the thickness – as incorrect as 
taking zero for the thickness of monolayer graphene – and it would be incorrect to take 
the changes in the separations of these nuclei as defining z. The extension of the 
electron wave-functions beyond these nuclei must be considered, just as the extension 
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of the -orbitals of graphene must be considered.
However, the central point here is that 2D elasticity theory can be used, if it would 

be useful, but only with careful definitions. Consider the plane-strain measurement of 
a 2D specimen under 3D plane-stress conditions, i.e. z = y = 0. In 2D elasticity, we 
have (with  and c components all understood as 2D quantities measured in Nm–1) 

 (S12)(1
2) = (𝑐11 𝑐12

𝑐12 𝑐22)(1
0 )

Solving, 1 = c1111. This is not the 3D equation divided by a33 (compare Eq. S10 
above).  
Thus our experiments described in the main text that use or determine the 3D plane-

strain modulus  determine equally directly the 2D c11. We use the notation �̅�13

assignment for directions which is consistent in general 2D materials research and 
especially for graphene, that is 1 and 2 in-plane, and 3 out-of-plane. We report values 
of elastic constants with the notation consistent with the majority of 2D materials 
studies. However, often 2 is used for out-of-plane direction in the As2S3 literature and 
attention must be paid to correct conversions of subscripts before comparisons of values 
are made.      

3.5. Application to loading by bending a compliant substrate

In these experiments, the substrate is a wide and thick polymer beam which is 
bent to put the surface in uniaxial tension before the exfoliated flake is deposited. The 
beam is then relaxed so that the flake is put under uniaxial compression. The energy 
that is released when wrinkles form or buckling delamination occurs comes from the 
increase in length of the flake, and goes into the bending of the beam and the 
deformation of the substrate underneath. For wrinkles that are long compared with their 
wavelength, none of these deformations cause any displacement of material parallel to 
the wrinkles, so the strain in this direction is zero and it is the 3D plane strain moduli 

 which enter into the problem. The same applies if the flake is deposited on the �̅�

unstrained substrate which is then bent to put the flake in compression. 
    

3.6 Application to loading by deposition on a non-compliant substrate 

When a 2D flake is deposited on a hard substrate such as silicon, it is usually found 
to be in a state of non-zero in-plane strain, often sufficient to cause buckling by 
delamination. Since the strain in the flake parallel to the wrinkles is non-zero, it is worth 
checking if the plane-strain modulus still applies. Taking Eq. S8 and adding a strain in 
the y-direction, we have,  

 (S13)
(1
2
0 ) = (𝑐11 𝑐12 𝑐13

𝑐12 𝑐22 𝑐23
𝑐13 𝑐23 𝑐33

)(1
2
3

)
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and solving these three equations, we obtain,

 (S14)
1 = (𝑐11 ‒

𝑐 2
13

𝑐33)1 + (𝑐12 ‒
𝑐13𝑐23

𝑐33
)2

From this, we see that  is again the plane-strain modulus.𝑑1/𝑑1

3.7 Loading by uniaxial compression of a compliant substrate

For completeness, we note an exception to the general applicability of the plane-
strain modulus. That is the experiment of Vella et al.2 in which a film is deposited on 
an unstrained compliant substrate which is then compressed uniaxially to develop 
delamination buckling with wrinkles running perpendicular to the compression axis. It 
is not entirely clear whether this is uniaxial stress or uniaxial strain.2 Uniaxial stress 
results in a transverse strain in the substrate, and the extent to which this appears in the 
film will depend on the relative widths and thickness of the film and the substrate and 
of the buckling wavelength. Full solutions for different conditions should be checked 
by the methods above.     

4. Thickness determination of As2S3 flakes

Figure S3. (a) Transmission mode optical image of As2S3 flake on Gel-film. (b) Optical 
transmission of the flake along the dashed line in (a). (c) Optical image of the flake 
transferred to a SiO2/Si substrate. (d) Thickness of the flake measured by AFM along 
the dashed line in (c). Scale bars, 10 μm. 
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Figure S4. The relationship between thickness and transmittance of As2S3 flakes. The 
solid line is the 3rd order polynomial function returned by fitting a + bx + cx2 + dx3 to 
the data. 

5. Wavelength determination of As2S3 wrinkles
The wavelength of the wrinkles are obtained by the fast Fourier Transform (FFT) 

of selected regions of the grayscale images using software Gwyddion. The variations 
of wavelength with thickness for wrinkles perpendicular to the AC and ZZ directions 
are shown in Figure S5.
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Figure S5. Grayscale optical microscopy images of As2S3 flakes of different thickness 
with wrinkles perpendicular to (a) the AC direction and (b) the ZZ direction. Scale bar, 
2.5 μm. 

6. Buckling modes validation
It may be questioned whether the attributions of wrinkling and buckling 

delamination are correct. However, it is also readily tested by the data we report. For 
the experiments we identify as delamination, plots of wavelength against thickness (-
t) as in Eq.2 for wrinkling show large scatter (red data-points in Fig. S6). To get a 
quantity that should be proportional to t according to delamination theory (Eq. 2), we 

construct a corrected wavelength  by multiplying  by t¼, by A½, and by ¼. Plotting '

 against t, we see that the scatter collapses onto a straight line (blue data-points in Fig. '

S6); moreover, fitting with y = a + bx, the values of a returned are zero within 
uncertainties, as expected from Eq.2. This is conclusive evidence that this data 
corresponds to delamination. To quantify this conclusion, we note that the log-
likelihoods of the fits3 show differences in favour of the delamination model of 9.0 (Si), 
7.8 (PMMA) and 9.9 (PDMS), which in the context of Bayes theorem correspond to 
probabilities (odds on) the delamination model of 8050:1 (Si), 2430:1 (PMMA) and 
20700:1 (PDMS)3. 

Fig. S6.  The data for delamination buckling on (a) silicon, (b) PMMA and (c) PDMS 
is plotted according to the wrinkling formula, Eq.2,  against t (open red data points) 
and fitted with y = a + bx (dashed red line). According to the delamination formula, 

Eq.3, the quantity  should be proportional to t so this is plotted (solid ' = 𝑡¼𝐴½¼
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blue data points) and fitted with y = a + bx (solid blue line). The vertical scale is reduced 

by a factor of five to bring the  data conveniently onto the -t graph.'

To show that delamination did not occur in the wrinkling experiments, the converse 
argument can be used. They fit well Eq.2 with a zero intercept, and from Fig.S6 this 
would be a very surprising outcome if delamination was occurring. From Eq.3, it could 
only happen if A was accurately proportional to t½ (to give   t). Theoretically, A is 
expected to be proportional to t1 (and to vary with the compressive strain in the flake). 
It was not convenient to measure A in the wrinkling experiments, but we kept the 
applied strain constant (0.05 compressive). This would give   t5/4, which fits the data 
very badly, with log-likelihoods at –20 (AC) and –11 (ZZ) against the linear fits of 
Fig.3. And the actual strain was certainly much less (we estimate 0.05%) and would 
have varied with the length of each specimen, giving rise to scatter in Fig. 2. 
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