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� Continuum model for Al2B2 configuration around K point.

Table S1: Symmetrized matrices for the invariant expansion of the diagonal blocks Hii for the point
group D3h.

Block Representations Symmetrized matrices Tensor components
H11 Γ6 ⊗ Γ∗6 Γ1 : 1 Γ1 : 1; k2x + k2y

= Γ1 + Γ2 + Γ6 Γ2 : σz Γ2 : −
Γ6 : σx, σy Γ6 : (kx, ky); (k2y − k2x, 2kxky)

H22 Γ4 ⊗ Γ∗4 Γ1 : 1 Γ1 : 1; k2x + k2y
= Γ1

The diagonalization of parameter-dependent Hamiltonian (1) of the main text results in the

three-band energy spectra

E1,2(kx, ky) = E0 + A(kx
2 + ky

2)±
√
B2(kx

2 + ky
2) + C2(kx

2 + ky
2)2 − 2BC(kx

3 − 3kxky
2), (S1)

E3(kx, ky) = E ′0 + A′(kx
2 + ky

2). (S2)

The fitted parameters are E0 = 1.19 eV, A = −113.16 eVÅ2, B = 8.78 eVÅ, C = 132.10 eVÅ2,

E ′0 = −0.56 eV, A′ = 66.33 eVÅ2. The fitted bands are shown in Fig. S1. A comparison

between the DFT bands and the bands from our continuous model shows that although

continuum energy bands do not fit well by moving away from K point, they reproduce well

the band dispersions near the K point and thus the distribution of NL1.
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Figure S1: Comparison between DFT bands and the bands from the continuum model near the K
point of Al2B2.

� Continuum model for Al2B2 configuration around Γ point.

Table S2: Symmetrized matrices for the invariant expansion of the diagonal blocks Hii for the point
group D6h.

Block Representations Symmetrized matrices Tensor components
H11 Γ+

6 ⊗ Γ+∗
6 Γ+

1 : 1 Γ+
1 : 1; k2x + k2y

= Γ+
1 + Γ+

2 + Γ+
6 Γ+

2 : σz Γ+
2 : −

Γ+
6 : σx, σy Γ+

6 : (k2y − k2x, 2kxky); (k4x − 6k2xk
2
y + k4y, 4kxk

3
y + 4k3xky)

H22 Γ−2 ⊗ Γ−∗2 Γ+
1 : 1 Γ+

1 : 1; k2x + k2y
= Γ+

1

Energy bands as obtained from the continuum model:

E1,2(kx, ky) = E0 + A(kx
2 + ky

2)±
√
B2(kx

2 + ky
2)2 + C2(kx

2 + ky
2)4 − 2BC(kx

6 − 15kx
4ky

2 + 15k2xk
4
y − k6y),

(S3)

E3(kx, ky) = E ′0 + A′(kx
2 + ky

2). (S4)

The fitted parameters are E0 = −0.37 eV, A = −43.88 eVÅ2, B = 11.10 eVÅ2,C = 100.17

eVÅ4, E ′0 = −2.85 eV, A′ = 12.36 eVÅ2. Using the fitted values we have shown in Fig. S2 a

comparison between DFT bands and the bands from our continuum model.
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Figure S2: Comparison between DFT bands and the bands from the continuum model near the Γ
point of Al2B2.

� Continuum model for AlB4 around the Γ point.

Table S3: Symmetrized matrices for the invariant expansion of the diagonal blocks Hii for the point
group D6h.

Block Representations Symmetrized matrices Tensor components
H11 Γ−6 ⊗ Γ−∗6 Γ+

1 : 1 Γ+
1 : 1; k2x + k2y

= Γ+
1 + Γ+

2 + Γ+
6 Γ+

2 : σz Γ+
2 : −

Γ+
6 : σx, σy Γ+

6 : (k2y − k2x, 2kxky); (k4x − 6k2xk
2
y + k4y, 4kxk

3
y + 4k3xky)

H22 Γ+
6 ⊗ Γ+∗

6 Γ+
1 : 1 Γ+

1 : 1; k2x + k2y
= Γ+

1 + Γ+
2 + Γ+

6 Γ+
2 : σz Γ+

2 : −
Γ+
6 : σx, σy Γ+

6 : (k2y − k2x, 2kxky); (k4x − 6k2xk
2
y + k4y, 4kxk

3
y + 4k3xky)

H33 Γ−2 ⊗ Γ−∗2 Γ+
1 : 1 Γ+

1 : 1; k2x + k2y
= Γ+

1

Energy bands as obtained from the continuum model:

E1,2(kx, ky) = E0 + A(kx
2 + ky

2)±
√
B2(kx

2 + ky
2)2 + C2(kx

2 + ky
2)4 − 2BC(kx

6 − 15kx
4ky

2 + 15k2xk
4
y − k6y),

(S5)

E3,4(kx, ky) = E ′0 + A′(kx
2 + ky

2)±
√
B′2(kx

2 + ky
2)2 + C ′2(kx

2 + ky
2)4 − 2B′C ′(kx

6 − 15kx
4ky

2 + 15k2xk
4
y − k6y),

(S6)

E5(kx, ky) = E ′′0 + A′′(kx
2 + ky

2). (S7)
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By fitting the parameters with DFT results, we obtain E0 = 0.28 eV, A = −42.10 eVÅ2,

B = 12.55 eVÅ2,C = 74.19 eVÅ4, E ′0 = 0.88 eV, A′ = −36.14 eVÅ2, B′ = 8.80 eVÅ2,C ′ =

58.35 eVÅ4, E ′′0 = −2.72 eV, A′′ = 11.64 eVÅ2. The comparison between DFT bands and

the bands from the continuum model near the Γ point of AlB4 is shown in Fig. S3.
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Figure S3: Comparison between DFT bands and the bands from the continuum model near the Γ
point of AlB4.
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� Mirror eigenvalues of electronic bands in Al2B2 and AlB4.

+

-

+

-
++

+ - -

+

-

+

+
+

--

+
+
+-
-
-

+
+

-

AlB4Al B2 2

BL

AL

A
II

B
II

A
KB

K
1AL

1
BL

2
AL

2BL

B
M

A
M

(a) (b)

Figure S4: Mirror eigenvalues of selected bands for (a) Al2B2 and (b) AlB4 monolayers. The picked
points in tables I and II are also shown by magenta circles.

� Electronic band structures of Al2B2 and AlB4 with SOC effect.

Both Al2B2 and AlB4 monolayers have spatial inversion (P ) and time-reversal (T ) symmetry.

Therefore, with the inclusion of SOC, the combined symmetry PT ensures that each band is

doubly degenerate. In addition, the resulting Kramers pair has opposite Mz eigenvalues ±i

that impose an interaction between energy bands that form mirror-protected NLs, and one

expects to observe a tiny gap at nodal points.1 Figure S5 shows the electronic band structures

of Al2B2 and AlB4 monolayers with the SOC effect. It turns out that the SOC strength

induces tiny gaps (less than 4 meV) at all crossing nodal points. It is worth mentioning that

the SOC induced gaps are more sizable for experimentally realized 2D NLs2–4 than that of

monolayer Al2B2 and AlB4. In comparison, the NLs in these materials are more robust and

thus very likely to be observed in future experiments.
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Figure S5: Calculated electronic band structure of (a) Al2B2 and (c) AlB4 with the inclusion of
SOC effect. (b) and (d) Zoom-in band structures in the red rectangles in (a) and (c) to clearly show
the SOC-induced gaps.

� Electronic properties of monolayer AlB2.

The electronic band structure of freestanding monolayer AlB2 is shown in Fig. S6. Within

2.5 eV of the Fermi level there are several bands which cross and form four p−type Dirac cones

below (red circles) and a gapless n−type Dirac cone above (blue circle) the Fermi surface,

respectively. We mark these bands by Greek letters as shown in the figure. Group theory

analysis of these energy bands shows that along the Γ-M and K-M symmetry directions
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the symmetry groups is Cs which has an out of plane symmetry element. Along these

directions β, γ and δ bands belong to the Γ1 IR which have positive mirror parities. Also,

the IR of α and ν bands are Γ2 with a negative mirror eigenvalue.5 As a result, within the

mentioned energy window one can observe the formation of four Dirac points DP1-DP4 due

to the crossing of bands with opposite mirror parities. The remaining Dirac point (DP3)

is located at the K point which arises from the boron hexagonal lattice as for the Dirac

cones in graphene. Note that due to the absence of in-plane mirror symmetry in monolayer

AlB2, along arbitrary low-symmetry directions X-Γ and X′-K one can see no crossing (see

Figs. S7 a and b). Therefore, we do not expect symmetry protected NLs in this structure.

The existence of p−type Dirac Fermions in this configuration has been confirmed by recent

ARPES measurements.6
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Figure S6: The electronic band structure of monolayer AlB2 along the high symmetry paths M-Γ-
K-M. The p− and n−type Dirac cones are shown by red and blue circles, respectively.
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Figure S7: The electronic band structure of monolayer AlB2 along typical low-symmetry directions
(a) X-Γ and (b) X′-K as shown in (c). The zoomed-in band structures indicated by the red ellipses
are shown in (d) and (e).
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