Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Supplementary information

Manipulating the electronic structure and physics properties in monolayer Mo₂I₃Br₃ via strain and doping

Wenning Ren,^{1,2} Kuijuan Jin,*^{1,2,3} Cheng Ma,^{1,2} Chen Ge,^{1,2} Erjia Guo,^{1,2} Can

Wang,^{1,2,3} Xiulai Xu^{1,2,3} and Guozhen Yang^{1,2}

¹Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese

Academy of Sciences, Beijing 100190, P. R. China

²School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R.

China

³Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China

* Author to whom correspondence should be addressed to Kuijuan Jin:

kjjin@iphy.ac.cn

Figure. S1 The on-site Hubbard U_{eff} dependence of band structures. The gray horizontal dashed lines denote the Fermi level.

Figure. S2 The energy difference between different magnetic orderings as a function of on-site Hubbard U_{eff} in monolayer Mo₂I₃Br₃. We set $U_{eff} = 2.0$ eV in the calculation, corresponding to a ferromagnetic ground state.

Figure. S3 The considered magnetic configurations of the monolayer Mo₂I₃Br₃: (a) FM, (b) Neel-

AFM, (c) Stripe-AFM, and (d) Zigzag-AFM. The green arrows denote the exchange paths.