Supplementary Information

On-chip photonics and optoelectronics with van der Waals material dielectric platform

Xiaoqi Cui, *^{a,b} Mingde Du, ^a Susobhan Das, ^a Hoon Hahn Yoon, ^{a,b} Vincent Yves Pelgrin, ^{a,c} Diao Li ^{a,b} and

Zhipei Sun *a,b

^a Department of Electronics and Nanoengineering, Aalto University, Espoo FI-02150, Finland

^b QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland

^c Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies,

91120, Palaiseau, France

Email: zhipei.sun@aalto.fi, xiaoqi.cui@aalto.fi

integrated Si₃N₄ waveguide, in which the width of the waveguide is also designed as 6 μ m as in this case the waveguide allows multimode propagation with an acceptable linear loss (~1.79 dB·mm⁻¹ at 532 nm, as shown in Figure S7, the pure Si₃N₄ waveguides are fabricated along with the InSe integrated ones following the same parameters).

Figure S2, Raman spectrum of the MoS₂ waveguides.

Figure S3, AFM characterization of the MoS₂ integrated devices. **a** The AFM image and **b** the height profile corresponding to the section (indicated by the green line in **a**).

Figure S4, Scheme of the homemade waveguide coupling system.

Figure S5, Loss measurement results and linear fitting line of the pure Si_3N_4 waveguides, which are fabricated together with the MoS₂ integrated ones following the same parameters. The insertion loss and the linear loss of the Si_3N_4 waveguide are 11.77 dB and 2.11 dB, respectively. The measurement is carried out by the cut-back method at 632 nm.

Figure S6, Three-dimensional graphs of Si₃N₄ waveguide and MoS₂ waveguide measured by AFM. The waveguides are fabricated together following the same parameters. The calculated roughness R-max= \sim 65 nm, Rq= \sim 13 nm, Ra= \sim 10 nm for Si₃N₄ waveguides and R-max= \sim 20 nm, Rq= \sim 3 nm, Ra= \sim 2 nm for MoS₂ waveguides, respectively.

Figure S7, Linear loss of Si₃N₄ waveguides measured from the comparison sample which is fabricated along with the InSe integrated ones following the same parameters. The measurement is carried out by cut-back method.

Figure S8, Raman spectrum of the InSe flake. The distinct InSe peaks at ~115 cm⁻¹, ~176 cm⁻¹, and ~226 cm⁻¹, corresponding to A_g , E^2_g , and A^2_g phonon modes, respectively.

Figure S9, Excitation-controlled measurement with 532 nm pump laser which is controlled in a 10-second on/off period. The measurement is carried out using free-space coupling. From the diagram, one can clearly observe periodic on and off states of the drain current I_d, which corresponds to the laser on and off, respectively.

Figure S10, Demonstration of on-chip photodetectors with vdW materials. a I_d-V_d curves of freespace coupling with 532 nm laser illumination, Vg=-60 V; b the calculated photo-responsivity of free-space coupling at different incident intensity, Vg=-60 V and Vd=2 V. The free-space measurement is done in the WITec alpha300 system with a 20x objective (NA=0.4), the sample is connected to a print circuit board. Keithley 2401 and Keithley 2400 are used for applying source/drain and gate. The two source meter units are grounded and controlled by a homemade LabVIEW software for data collection.

According to the photocurrent mapping result (shown in the inset of Fig. 4a), the laser beam is focused on the highest photo-response area for the measurement. As shown in Fig. S10a, I_d-V_d curves are collected at different incident intensity under the same gate voltage of -60V. When the laser illuminates on the flake, the drain current I_d shows clear dependence on the intensity, but the I_d-V_d curves exhibit an apparent rectifying effect. This is due to the Schottky barrier at the surface of the flake and the Ti/Au electrodes. The photo-responsivity is calculated in the case of V_g=-60 V and V_d=2 V and plotted in Fig. S10b, in which the highest photo-responsivity is 0.06 A·W⁻¹ at the intensity of ~40 W·cm⁻².