# Supporting Information

## **Electrocatalytic Water Oxidation Performance in an Extended Porous Organic Framework with a Covalent Alliance of Distinct Ru-Sites**

Bishal Boro,<sup>a,b</sup> Mrinal K. Adak,<sup>c</sup> Sohag Biswas,<sup>d</sup> Chitra Sarkar,<sup>a,b</sup> Yogendra Nailwal,<sup>e</sup> Abhijit Shrotri,<sup>f</sup> Biswarup Chakraborty<sup>\*,c</sup> Bryan M. Wong<sup>\*,d</sup> & John Mondal<sup>\*,a,b</sup>

<sup>a</sup>Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India, Email:johnmondal@iict.res.in;johncuchem@gmail.com

<sup>b</sup>Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.

<sup>c</sup>Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India. Email: <u>cbiswarup@chemistry.iitd.ac.in</u>

<sup>d</sup>Department of Chemical & EnvironmentalEngineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California 92521, United States. Email: <u>bryan.wong@ucr.edu</u>

<sup>e</sup>Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, Manauli 140306, India.

<sup>f</sup>Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.

### **Table of Contents**

| Entry | Content                                                                                                      | Page No.     |
|-------|--------------------------------------------------------------------------------------------------------------|--------------|
| 1     | Materials and methods                                                                                        | <b>S</b> 3   |
| 2     | Characterization techniques                                                                                  | <b>S3-S4</b> |
| 3     | <sup>1</sup> H NMR spectrum of ( <b>Ru(demob)<sub>3</sub>Cl<sub>2</sub></b> )                                | S5           |
| 4     | <sup>13</sup> C NMR spectrum of ( <b>Ru(demob)</b> <sub>3</sub> Cl <sub>2</sub> )                            | <b>S6</b>    |
| 5     | ESI-MS spectrum of (Ru(demob) <sub>3</sub> Cl <sub>2</sub> )                                                 | <b>S7</b>    |
| 6     | Thermal gravimetric analysis (TGA) plots of Ru@Bpy-POP                                                       | <b>S8</b>    |
| 7     | Wide-angle powder X-ray diffraction pattern of <b>Ru@Bpy-POP</b>                                             | <b>S9</b>    |
| 8     | FT-IR spectrum of Ru@Bpy-POP                                                                                 | S10          |
| 9     | TEM images of Ru@Bpy-POP                                                                                     | <b>S11</b>   |
| 10    | FE-SEM images of Ru@Bpy-POP                                                                                  | S12          |
| 11    | XPS survey spectrum of Ru@Bpy-POP                                                                            | S13          |
| 12    | Cyclic voltammetry of Ru@Bpy-POP & RuO <sub>2</sub>                                                          | <b>S14</b>   |
| 13    | TEM images of reused catalyst Ru@Bpy-POP                                                                     | S15          |
| 14    | FE-SEM images of reused catalyst Ru@Bpy-POP                                                                  | <b>S16</b>   |
| 15    | Polarization curve obtained from the mass normalized activity<br>of <b>Ru@Bpy-POP</b> and RuO <sub>2</sub> . | S17          |
| 15    | References                                                                                                   | S18          |

#### Materials and methods:

#### Materials

4,4'-Dimethoxy-2,2'-bipyridine and carbazole were purchased from TCI Chemicals (India) Pvt. Ltd.RuCl<sub>3</sub>·xH<sub>2</sub>O, sodium hypophosphite, and ammonium chloridewerepurchased from Sigma Aldrich. Ethanol (EtOH), Nitromethane (NM), Tetrahydrofuran (THF), Acetone, and Methanol (MeOH) were purchased from Finer.All the chemicals were used as received without further purification.

#### **Characterization Techniques:**

Powder X-ray diffraction (XRD) patterns of the catalysts were performed with a Bruker D8 Advance X-ray diffractometer operated at a voltage of 40 kV and a current of 40 mA by using Ni-filtered Cu Ka (l=0.15406 nm) radiation.Data were recorded in the 20 range from 10 to 80° in a continuous scanning mode with a 0.01° sampling pitch and 5° min<sup>-1</sup> scan rate. The morphology of the catalysts was obtained by scanning electron microscopy (SEM).Fieldemission scanning electron microscopic images of samples were obtained using a JEOL JEM 6700 field-emission scanning electron microscope (FE-SEM) equipped with an Energy-Dispersive Spectroscopy (EDS) detector. The elemental mapping EDS analysis was also performed on the same SEM instrument. High-resolution transmission electron microscopy (HR-TEM) images were recorded with a JEOL JEM 2010 transmission electron microscope with an operating voltage 200 kV equipped with a FEG. STEM images were obtained in a JEOL JEM-ARM200F atomic resolution electron microscope at an acceleration voltage of 200 kV equipped with an EDS detector EX-24221M1G5T, has a guaranteed resolution of 0.08 nm. Nitrogen sorption isotherms were obtained by using a Quantachrome Autosorb 1C surface area analyzer at 77 K. Prior to the measurements, the samples were degassed at 140°C for approximately 6 h under high-pressure vacuum. Surface areas were calculated from the adsorption data by using the Brunauer-Emmett-Teller (BET) method in the relative pressure  $(P/P_0)$  range of 0.01-0.1. The total pore volumes and pore size distribution curves were obtained from the adsorption branches using non-local density functional theory (NLDFT) methods.X-ray photoelectron spectroscopy (XPS) was investigated on a Thermo Scientific K-Alpha instrument(monochromatic Al K $\alpha$  radiation,  $E_{photon} = 1486.6 \text{ eV}$ ). The binding energy (B.E) in each case (i.e., core levels and valence band maxima) were corrected using an

internal reference of C-1 s peak centered at 284.8 eV. An FT-IR spectrum of the catalysts was investigated on a DIGILAB (USA) IR spectrometer using the KBr disc method. Solid-state <sup>13</sup>C CP MAS NMR studies were performed using a Bruker Avance III HD400 MHz NMR spectrometer.

Electrochemical measurements of the **Ru@Bpy-POP** were done with a potentio stat (Gamry instrument) instrument, which is controlled by the Gamry Echem Analyst software. During our electrocatalytic measurement, a reference electrode (Hg/HgO), a counter electrode (Pt), and a catalyst doped working electrode (**Ru@Bpy-POP/NF**) were used in a three-electrode setup. In the electrocatalytic study, 1 M aqueous KOH solution was used as an electrolyte. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) of the catalysts were investigated in the potential range of 0 to 1V for the oxygen evolution reaction (OER) under a 1 mV s<sup>-1</sup> scan rate. The potential of the reference electrode was determined according to the following equation. E(RHE) = E (Hg/HgO) + 0.098V + (0.059 × pH) V. The Tafel slope was determined from the LSV plot. In the Tafel plot, overpotentials (η) vs. the logarithm of current density were plotted. The Tafel slope was determined from the following equation:

### $\eta = blog(j) + a$

where  $\eta$ , j, and b indicate the overpotential value, current density, and Tafel slope respectively.The double-layer capacitance (C<sub>dl</sub>) value was used to determine the active surface area on the electrode. For C<sub>dl</sub> values, different CV curves were recorded (-0.05 V to +0.05 V) at 10, 25, 50, 100, 150, and 200 mV s<sup>-1</sup> scan rates. The electrochemically active surface area (ECSA) was calculated from the following relation

$$ESCA = \frac{C_{dl}}{C_s}$$

In 1 (M) KOH, the  $C_s$  value for NF is 1.7 mF cm<sup>-2.1</sup>

Electrochemical impedance spectroscopy (EIS) of the R-1 electrode was done within the frequency range 100 to 1 MHz solution resistance (Rs), and the charge transfer resistance ( $R_{ct}$ ) at the working electrode was determined from the Nyquist plot. For the stability test, a chronoamperometry study was done for 12 h with a constant current density of 10 mA cm<sup>-2</sup>.



Figure S1: <sup>1</sup>H NMR spectrum of (Ru(demob)<sub>3</sub>Cl<sub>2</sub>) in CD<sub>3</sub>OD solvent.



Figure S2: <sup>13</sup>C NMR spectrum of (Ru(demob)<sub>3</sub>Cl<sub>2</sub>) in CD<sub>3</sub>OD solvent.



Figure S3: ESI-MS spectrum of (Ru(demob)<sub>3</sub>Cl<sub>2</sub>) in CH<sub>3</sub>CN solvent.



Figure S4: Thermo gravimetric analysis (TGA) plot of Ru@Bpy-POP.



Figure S5: Wide angle powder X-ray diffraction pattern of Ru@Bpy-POP.



Figure S6: FT-IR spectrum of Ru@Bpy-POP



Figure S7: (a & b) TEM images in the low magnification and (c & d) high magnification of Ru@Bpy-POP.



Figure S8: FE-SEM images of Ru@Bpy-POP.



Figure S9: XPS survey spectrum of Ru@Bpy-POP



Figure S10: Cyclic voltammetry (CV) of Ru@Bpy-POP (a) & RuO<sub>2</sub> (b) at different scan rates (10, 25, 50, 100, 150, and 200 mV s<sup>-1</sup>) for ECSA and  $C_{dl}$  calculation.



Figure S11: FE-SEM images of Reused catalyst Ru@Bpy-POP.



Figure S12: TEM images of Reused catalyst Ru@Bpy-POP.



Figure S13: Polarization curve obtained from the mass normalized activity of Ru@Bpy-POP (blue) and  $RuO_2$  (red).

### References

 C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc.2013, 135, 16977-16987.