Laser-ablation assisted strain engineering of gold nanoparticles for selective electrochemical CO₂ reduction

Chao Zhang^{a‡}, Wei Zhang^{e‡}, Ferdi Karadas^d, Jingxiang Low^b, Ran Long^b, Changhao

Liang^{c*}, Jin Wang^a, Zhengquan Li^{a*}, Yujie Xiong^{b*}

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials,

Zhejiang Normal University, Jinhua, Zhejiang 321004, China

^bSchool of Chemistry and Materials Science, University of Science and Technology of

China, Hefei 230026, China

^cKey Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials

and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences,

Hefei 230031, China

^dNational Nanotechnology Research Center, and Department of Chemistry, Bilkent

University, 06800 Ankara, Turkey

^eInstitute for Energy Research, Jiangsu Unversity, Zhenjiang, Jiangsu 212013, China E-mail: chliang@issp.ac.cn, zqli@zjnu.edu.cn, yjxiong@ustc.edu.cn

‡These authors contributed equally to this work.

In situ Raman spectroscopy measurements

For the *in situ* Raman spectroscopy measurements, all of the measurements were performed on a WITec alpha 300R confocal Raman microscope with a 600 grooves/mm diffraction grating. A 532 nm excitation laser with a power of 5 mW was used as excitation source. Calibration was conducted based on the peak at 520 cm⁻¹ of a silicon wafer standard. An H-shape cell separated by an anion exchange membrane was employed to perform *in situ* Raman spectroscopy characterization for electrochemical CO₂ reduction (Figure R1). An Ag/AgCl (saturated with KCl) electrode and a Pt wire were used as the reference and counter electrodes, respectively. Before the test, 0.1 M KHCO₃ was purged with high-purity CO₂ gas for 30 min and then added into the H-shape cell. The electrocatalytic process was studied via a CHI 660E electrochemical workstation, and *in situ* Raman spectra were obtained under potentiostatic conditions.

Fig. S1 UV-vis absorption spectrum of Au-LAL colloids and (inset) photograph of Au-LAL colloids.

Fig. S2 TEM images of the Au-LAL, taken from four randomly-selected nanoparticles.

Fig. S3 (a) TEM image of Au-A NPs and (inset) the size distribution of Au-A NPs. (b) HRTEM image of an Au-A nanoparticle.

Fig. S4 TEM images of the Au-A, taken from four randomly-selected nanoparticles.

Fig. S5 XRD patterns of Au-LAL and Au-A.

Fig. S6 Rietveld refined XRD patterns of (a) Au-LAL and (b) Au-A.

Fig. S7 (a) The survey XPS spectra and (b) high-resolution O 1s XPS spectra of Au-LAL and Au-A.

Fig. S8 The LSV curves of (a) Au-LAL and (b) Au-A in Ar and CO_2 -saturated 0.1 M KHCO₃ electrolyte.

Fig. S9 The Faraday efficiencies (FEs) of H_2 for Au-LAL and Au-A NPs.

Fig. S10 FEs of CO and H_2 at different applied potentials for Au-LAL and Au-A with different mass ratio of (a) 2:1, (b) 3:1 and (c) 5:1. (d) Molar ratio of H_2 /CO for Au-LAL and Au-A with different mass ratio.

Fig. S11 XRD patterns of Au-LAL NPs before and after electrochemical CO₂ reduction stability test.

Fig. S12 (a) TEM and (b) HRTEM images of Au-LAL after stability test. The inset shows the size distribution of Au-LAL after the stability test.

Fig. S13 Pb-UPD CV curves of Au-LAL and Au-A.

Fig. S14 (a) ECSA-corrected CO partial current density and (b) ECSA-corrected CO partial current density at -1 V of Au-LAL and Au-A.

Figure S15. (a) The electrochemical cell and (b) the experimental setup for *in situ* Raman spectroscopy measurements.

Fig. S16. The magnified region from 1.3 to 0.9 V of cyclic voltammograms for Au-LAL and Au-A in Ar-saturated 0.1 M HClO₄ electrolyte with a scan rate of 20 mV s⁻¹.

Sample	Potential (V)	-0.6	-0.7	-0.8	-0.9	-1.0	-1.1
Au-LAL	FEs of H ₂ (%)	7.2	3.3	2.3	2.8	15.3	40.8
	FEs of CO (%)	85.1	93.3	95.8	97	81.2	58
	j_{CO} (mA cm ⁻²)	-7	-13.6	-20.1	-24.9	-26.3	-24.2
Au-A	FEs of $H_2(\%)$	95.4	83.8	81.3	84.9	80.5	84.5
	FEs of CO(%)	4.1	10.7	15.8	16.2	18	16.7
	j_{CO} (mA cm ⁻²)	-0.25	-1.06	-2.1	-2.77	-3.7	-4.24

Table S1. The FEs of electrochemical CO_2 reduction products (H₂ and CO) for Au-LAL and Au-A NPs.

reduction.				
		Highest FFs (V	<i>j_{CO}</i> with highest	
Electrocatalysts	Electrolyte	DUE)	FEs in H-cell	Reference
		KHE)	$(\mathrm{mA}\mathrm{cm}^{-2})$	
Au-LAL	0.1 M KHCO ₃	97% at -0.9 V	24.7	This work
Au-CDots-C ₃ N ₄	0.5 M KHCO ₃	79.8% at -0.5 V	below 5	1
Au-CeO _x /C	0.1 M KHCO ₃	89.1% at -0.89 V	12.9	2
De-Au ₃ Cu	0.5 M KHCO ₃	94.3% at -0.43 V	/	3
4H-Au nanoribbons	0.1 M KHCO ₃	90% at -0.7 V	6.2	4
nanoporous Au	0.5 M KHCO ₃	94% at -0.6 V	/	5
o-AuCu ₃ @fct Au	0.1 M KHCO ₃	94.5% at -0.8 V	/	6
Pd ₁ Au ₂₄ nanoclusters	0.1 M KHCO ₃	${\sim}100\%$ at –0.9 V	20.3	7
Au ₁₉ Cd ₂ nanoclusters	0.5 M KHCO ₃	95% at -0.9 V	40	8
Mo-doped Au NPs	0.5 M KHCO ₃	97.5% at -0.4 V	11.22	9
Au-MPA/C	0.5 M KHCO ₃	96.2% at -0.75 V	19.2	10
ER-Au-UR/C	0.1 M KHCO ₃	94.2% at -0.68 V	9.4	11
nanoporous Au ₃ Cu	0.1 M KHCO ₃	${\sim}100\%$ at –0.7 V	below 25	12
pc-NPG	0.5 M KHCO ₃	98% at -0.5 V	11.8	13
Au aerogel	0.1 M KHCO ₃	95.6% at -0.5 V	4.78	14
AuCu aerogel	0.1 M KHCO ₃	92% at -0.7 V	7.42	15
AuPd aerogel	0.1 M KHCO ₃	99.96% at -0.5 V	2.4	16

Table S2.	Comparation	of	Au-based	electrocatalysts	toward	electrochemical	CO_2
reduction.							

Sample	Potential (V)	-0.6	-0.7	-0.8	-0.9	-1.0	-1.1
2:1	FEs of H ₂ (%)	87.5	64.9	264.5	57.3	58.5	56.9
	FEs of CO(%)	8.2	29.6	27.8	34.3	37.8	31.1
3:1	FEs of H ₂ (%)	58.6	54.9	43.6	47.7	57.2	51.1
	FEs of CO (%)	35	41.4	46	47.1	40.9	40
5:1	FEs of H ₂ (%)	23.4	20.8	14.2	12.5	28.7	41.4
	FEs of CO(%)	70.4	70.7	80.1	85.6	67.6	55.5

Table S3. The FEs of CO_2 reduction products (H₂ and CO) for Au-LAL and Au-A with different mass ratio.

Table S4. ECSA-corrected CO partial current density of Au-LAL and Au-A NPs.								
Potential (V)	-0.6	-0.7	-0.8	-0.9	-1.0	-1.1		
Au-LAL (mA cm ⁻²)	-0.62	-1.21	-1.79	-2.22	-2.34	-2.16		
Au-A (mA cm ⁻²)	-0.02	-0.10	-0.21	-0.27	-0.36	-0.42		

$CO_2(g)$	*CO ₂	*COOH	*CO +	CO(g) +	Barrier energy
/eV	/eV	/eV	$H_2O(g)$	$H_2O(g)$	/eV
			/eV	/eV	
1.407	1.168	2.211	2.053	1.865	1.043
1.407	1.824	2.982	2.531	1.865	1.158
	CO ₂ (g) /eV 1.407 1.407	CO2(g) *CO2 /eV /eV 1.407 1.168 1.407 1.824	CO2(g) *CO2 *COOH /eV /eV /eV 1.407 1.168 2.211 1.407 1.824 2.982	CO2(g) *CO2 *COH *CO+ /eV /eV /eV H2O(g) 1.407 1.168 2.211 2.053 1.407 1.824 2.982 2.531	CO2(g) *CO2 *COH *CO+ CO(g)+ /eV /eV H2O(g) H2O(g) 1.407 1.168 2.211 2.053 1.865 1.407 1.824 2.982 2.531 1.865

Table S5. The adsorption free energy (eV) of CO₂ electroreduction adsorption species for normal and strained Au NPs.

Sampla	*CO ₂		*CO	ЮН	*CO+H ₂ O(g)		
Sample	ZPE/(eV)	-TS/(eV)	`S/(eV) ZPE/(eV) -T		ZPE/(eV)	-TS/(eV)	
Strained Au	0.308	0.137	0.616	0.173	0.793	0.126	
Normal Au	0.305	0.074	0.623	0.153	0.809	0.104	

Table S6. The ZPE and TS for adsorption species for normal and strained Au NPs.

Reference

- 1. H. Dong, L. Zhang, L. L. Li, W. Deng, C. L. Hu, Z. J. Zhao and J. L. Gong, *Small*, 2019, **15**, 1900289.
- 2. D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang,
 G. Wang and X. Bao, *J. Am. Chem. Soc.*, 2017, **139**, 5652–5655.
- 3. W. Zhu, L. Zhang, P. Yang, C. Hu, H. Dong, Z. J. Zhao, R. Mu and J. Gong, ACS *Energy Lett.*, 2018, **3**, 2144–2149.
- 4. Y. Wang, C. Y. Li, Z. X. Fan, Y. Chen, X. Li, L. Cao, C. H. Wang, L. Wang, D. Su,
- H. Zhang, T. Mueller and C. Wang, Nano Lett., 2020, 20, 8074-8080.
- 5. W. Q. Zhang, J. He, S. Y. Liu, W. X. Niu, P. Liu, Y. Zhao, F. J. Pang, W. Xi, M. W.
- Chen, W. Zhang, S. S. Pang and Y. Ding, *Nanoscale*, 2018, **10**, 8372–8376.
- 6. D. Yu, L. Gao, T. Sun, J. Guo, Y. Yuan, J. Zhang, M. Li, X. X. Li, M. C. Liu, C. Ma,
- Q. H. Liu, A. L. Pan, J. L. Yang and H. W. Huang, Nano Lett., 2021, 21, 1003–1010.
- S. Li, D. Alfonso, A. V. Nagarajan, S. D. House, J. C. Yang, D. R. Kauffman, G. Mpourmpakis and R. C. Jin, ACS Catal., 2020, 10, 12011–12016.
- 8. S. Li, A. V. Nagarajan, D. R. Alfonso, M. Sun, D. R. Kauffman, G. Mpourmpakis and R. C. Jin, *Angew. Chem. Int. Ed.*, 2021, **60**, 6351–635.
- 9. K. Sun, Y. Ji, Y. Liu and Z. Wang, J. Mater. Chem. A, 2020, 8, 12291–12295.
- 10. Z. Zhuang, Y. Zhang, L. Hu, H. Ying and W. Q. Han, *Chem. Asian J.*, 2020, **15**, 2153–2159.
- 11. Y. Zhang, L. Hu and W. Han, J. Mater. Chem. A, 2018, 6, 23610–23620.
- 12. X. Ma, Y. Shen, S. Yao, M. Shu, R. Si and C. H. An, Chem. Eur.J., 2020, 26, 4143-

4149.

13. X. L. Lu, T. S. Yu, H. L. Wang, L. H. Qian and P. X. Lei, ACS Catal., 2020, 10, 8860–8869.

14. S. Yan, S. A. Mahyoub, J. Lin, C. Zhang, Q. Hu, C. Z. Chen, F. Zhang and Z. Cheng, *Nanotechnology*, 2022, **33**, 125705.

15. D. Z. Zhong, L. Zhang, Q. Zhao, D. F. Cheng, W. Y. Deng, B. Liu, G. Zhang, H.

Dong, X. T. Yuan, Z. Zhao, J. P. Li and J. L. Gong, J. Chem. Phys., 2020, 152, 204703.

16. R. Du, W. Jin, H. Wu, R. Hübner, L. Zhou, G. Xue, Y. Hu and A. Eychmüller, J.

Mater. Chem. A, 2021, 9, 17189–17197.