Supporting Information

Boosting photocatalytic CO₂ reduction via Schottky junction

with ZnCr layered double hydroxide nanoflakes aggregated

on 2D Ti₃C₂T_x cocatalyst

Boye Zhou,^{*a,b*} Yong Yang,**^c* Zhengchu Liu,^{*a,b*} Niandu Wu,^{*a*} Yuxiang Yan,^{*a*} Wenhua Zhao,^{*a*} Huichao He,^{*d*} Jun Du,^{*a*} Yongcai Zhang,^{*e*} Yong Zhou**^{a,b,f}* and Zhigang Zou^{*a,b,f*}

^a National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China. E-mail: zhouyong1999@nju.edu.cn

^b Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China

^c Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology, Nanjing 210094, P. R. China. E-mail: yychem@njust.edu.cn

^d Institute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology. Chongqing 401331, China

^e Yangzhou University, School of Chemical Engineering, Yangzhou 225002, P. R. China

^f School of Science and Engineering, The Chinese University of Hongkong (Shenzhen), Shenzhen, Guangdong 518172, China

Figure S1. XRD patterns of Ti_3AlC_2 and $\text{Ti}_3\text{C}_2\text{T}_x.$

Figure S2. The 'black' colloid dispersion of $\text{Ti}_3\text{C}_2\text{T}_x$ nanosheets.

Figure S3. (a) Bulk $Ti_3C_2T_x$; (b) delaminated thinner $Ti_3C_2T_x$ nanosheets.

Figure S4. (a, b) SEM and TEM image of self-assembled ZnCr-LDH, respectively. (c,d) SEM and TEM image of ZCTC25, respectively.

Figure S5. (a) High-resolution XPS F 1s spectrum of ZCTC25 and $Ti_3C_2T_x$. (b) High-resolution XPS Ti 2p spectrum of ZCTC25.

Figure S6. High-resolution XPS Ti 2p spectrum of $Ti_3C_2T_x$.

Figure S7. High-resolution XPS C 1s spectrum of ZnCr-LDH.

Figure S8. High-resolution XPS valence band spectrum of ZnCr-LDH.

Figure S9. H_2 evolution of ZnCr-LDH and ZCTC25.

Figure S10. The production rate of different products of ZCTC25.

Figure S11. The production of CO and CH_4 under different conditions.

Figure S12. (a) The N_2 adsorption and desorption isotherms and pore size distributions (inset image) of ZnCr-LDH and ZCTC25. (b) The CO₂ adsorption curves of ZnCr-LDH and ZCTC25.

Figure S13. The CO₂ photoreduction performance of composite ZCTC without forming the Schottky junction by physically mixed ZnCr-LDH and $Ti_3C_2T_x$ MXene. (a) CH₄ yields. (b) CO yields.

Table S1. Content of $Ti_3C_2T_x$ MXene in ZCTC composites measured by inductively coupled plasma-optical emission spectrometry.

	ZCTC5	ZCTC25	ZCTC50
Ti₃C₂T _x (wt.%)	0.10	0.51	0.99

Catalyst	Light source	cocatalyst	Sacrificial agent	Major product evolution rate µmol·g ^{-1.} h ⁻¹	Ref.
Ti ₃ C ₂ /Bi ₂ WO ₆	Xe lamp			CH ₄ 1.78 CH ₃ OH 0.44	[1]
CdLa ₂ S ₄ /Ti ₃ C ²	A 300W Xenon lamp equipped with a high- pass filter (λ > 420 nm)		$\begin{array}{c} 0.25M\\ Na_2SO_3\\ and\\ 0.35M\\ Na_2S\end{array}$	H ₂ 11182.4	[2]
0.1Cu ₂ O@Zn 1.8Cr LDH	200-W Hg- Xe lamp			CO 6.3 µmol (24 h) H ₂ 3.8 µmol (24 h)	[3]
g-C₃N₄/NiAl- LDH	A 300 W xenon arc lamp with a UV cutoff filter ($\lambda \ge$ 420 nm)			CO 8.2	[4]
NiAl- LDH/TNS-75	300 W xenon lamp	[Ru(bpy)₃] Cl₂·6H₂O	MeCN/TE OA	CO 2128.46	[5]
ZnIn ₂ S ₄ / Ti ₃ C ₂	300 W Xe lamp with 420 nm long-pass cutoff filte		TEOA	H ₂ 3475	[6]
Bi ₂ MoO ₆ @M Xene	300 W Xe lamp			O ₂ 734.0	[7]
ZnCr- LDH/Ti ₃ C ₂ T _x	300 W Xe lamp			CO 122.45 µmol·g ⁻¹ (6 h) CH₄ 19.95 µmol·g ⁻¹ (6 h)	This work

Table S2. The results compared with the reported photocatalytic performance of similar composites.

References

[1] S Cao, B Shen, T Tong, J Fu, J Yu, Adv. Funct. Mater., 2018, 28, 1800136.

[2] L Cheng, Q Chen, J Li, H Liu, Appl. Catal. B, 2020, 267, 118379.

[3] H Jiang, K Katsumata, J Hong, A Yamaguchi, K Nakata, C Terashima, N Matsushita, M Miyauchi, A Fujishima, Appl. Catal. B, 2018, 224, 783.

[4] S Tonda, S Kumar, M Bhardwaj, P Yadav, S Ogale, ACS Appl. Mater. Interfaces. 2018, 10, 2667.

[5] S Zhao, D Pan, Q Liang, M Zhou, C Yao, S Xu, Z Li, J. Phys. Chem. C, 2021, 125, 10207.
[6] G Zuo, Y Wang, W Teo, A Xie, Y Guo, Y Dai, W Zhou, D Jana, Q Xian, W Dong, Y Zhao, Angew. Chem. Int. Ed., 2020, 59, 11287.

[7] G Zuo, Y Wang, W Teo, A Xie, Y Guo, Y Dai, W Zhou, D Jana, Q Xian, W Dong, Y Zhao, Chem. Eng. J., 2021, 403, 126328.