Supporting Information

In situ probing dynamic reconstruction of copperzinc electrocatalyst for CO₂ reduction

Yen-Po Huang,^{‡a} Ching-Wei Tung,^{‡a} Tai-Lung Chen,^a Chia-Shuo Hsu,^a Mei-Yi Liao,^{*b} Hsiao-Chien Chen,^{*c,d} and Hao Ming Chen^{*a,e}

^aDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan

^bDepartment of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan.

^cCenter for Reliability Science and Technologies, Chang Gung University, Taoyuan 33302, Taiwan

^dKidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou,

Taoyuan 33305, Taiwan

^eNational Synchrotron Radiation Research Center, Hsinchu 300, Taiwan

[‡]These authors contributed equally to this work.

Fig. S1 EDS spectra of (a) s-Cu₁Zn₃O_x and (b) s-Cu₅Zn₁O_x.

Fig. S2 XRD spectra of s-CuO, s-Cu₁Zn₃O_x, s-Cu₅Zn₁O_x and s-ZnO.

Fig. S3 The first derivative spectra of Cu foil, Cu₂O, CuO, s-CuO, s-Cu₁Zn₃O_x and s-Cu₅Zn₁O_x from XANES spectra of Cu K-edge.

Fig. S4 (a) Zn K-edge and (b) Cu K-edge EXAFS of the sputtered samples.

Fig. S5 LSV curves of s-CuO, s-Cu₁Zn₃O_x, s-Cu₅Zn₁O_x and s-ZnO in 1.0 M KOH.

Fig. S6 Faradaic efficiencies for formation of different products in the CO₂RR with s-Cu₁Zn₃O_x.

Fig. S7 Products partial current density of s-ZnO, s-CuO, s-Cu₅Zn₁O_x and s-Cu₁Zn₃O_x in 1.0 M KOH.

Fig. S8 Stability test of s-Cu₁Zn₃O_x at -1.86 V. (Inset: XPS of Cu 2p at 5 and 50 hrs.)

Fig. S9 In situ Cu K-edge XANES of (a) s-Cu₁Zn₃O_x and (c) s-Cu₅Zn₁O_x. In situ Zn K-edge XANES of (b) s-Cu₁Zn₃O_x and (d) s-Cu₅Zn₁O_x.

Fig. S10 The first derivative spectra of *in situ* (a) Cu K-edge and (b) Zn K-edge XANES of s- $Cu_5Zn_1O_x$.

Fig. S11 In situ (a) Cu K-edge and (b) Zn K-edge EXAFS of s-Cu₁Zn₃O_x.

Fig. S12 In situ (a) Cu K-edge and (b) Zn K-edge EXAFS of s-Cu₅Zn₁O_x.

Fig. S13 Cu-Cu and Zn-Zn bond distance as a function of potential for s-Cu₁Zn₃ and s-Cu₅Zn₁O_x.

Fig. S14 In situ synchrotron XRD for s-Cu₁Zn₃O_x during CO₂RR.

Fig. S15 TEM images of s-Cu₁Zn₃O_x (a) before and (b) after CO₂RR at applied potential of -1.86 V.

Fig. S16 Comparison of (a) Cu K-edge and (b) Zn K-edge EXAFS of $s-Cu_5Zn_1O_x$ when and after - 1.86 V was applied.

Condition	Path	Coordination	R(Å)	DW(Ų)
		number		
s-ZnO	Zn-O	4.0(1)	1.98(1)	0.0088(1)
	Zn-Zn	11.8(1)	3.19(2)	0.0084(1)
s-Cu ₁ Zn ₃ O _x	Zn-O	3.8(2)	1.97(1)	0.0088(1)
	Zn-Zn	11.1(1)	3.24(2)	0.0084(1)
s-Cu ₅ Zn ₁ O _x	Zn-O	3.7(1)	1.97(1)	0.0088(1)
	Zn-Zn	11.0(1)	3.23(2)	0.0084(1)

Table S1. Structural parameters extracted of s-ZnO, s-Cu₁Zn₃O_x and s-Cu₅Zn₁O_x from Zn K-edgeEXAFS. Fourier-transforms (FT) were performed in the k-range between 2.5 Å⁻¹ and 10 Å⁻¹.

Condition	Path	Coordination	R(Å)	DW(Ų)
		number		
s-CuO	Cu-O	4.1(1)	1.96(1)	0.0084(1)
	Cu-Cu	11.6(2)	3.23(1)	0.0082(1)
s-Cu ₅ Zn ₁ O _x	Cu-O	3.3(2)	1.93(1)	0.0054(1)
	Cu-Cu	2.1(2)	2.97(2)	0.0050(1)
s-Cu ₁ Zn ₃ O _x	Cu-O	3.4(2)	1.91(1)	0.0054(1)
	Cu-Cu	1.2(2)	3.03(2)	0.0050(1)

Table S2. Structural parameters extracted of s-CuO, s-Cu₅Zn₁O_x and s-Cu₁Zn₃O_x from Cu K-edgeEXAFS. Fourier-transforms (FT) were performed in the k-range between 2.5 Å⁻¹ and 10 Å⁻¹.

Condition	Path	Coordination number	R(Å)	DW(Ų)
As prepared	Cu-O	3.4(2)	1.91(1)	0.0054(1)
	Cu-Cu	1.2(2)	3.03(2)	0.0050(1)
In electrolyte	Cu-O	3.3(2)	1.94(1)	0.0054(1)
	Cu-Cu	2.3(1)	2.94(2)	0.0050(1)
-1.06 V	Cu-Cu	11.9(1)	2.55(1)	0.0106(1)
-1.56 V	Cu-Cu	11.3(1)	2.56(1)	0.0106(1)
-1.86 V	Cu-Cu	10.9(1)	2.56(1)	0.0106(1)
After -1.86 V	Cu-Cu	10.8(1)	2.56(1)	0.0106(1)

Table S3. Structural parameters extracted of s-Cu₁Zn₃ from *in situ* Cu K-edge EXAFS during CO₂RR.Fourier-transforms (FT) were performed in the k-range between 2.5 Å⁻¹ and 10 Å⁻¹.

R[Å]: Apparent distance

CN: Coordination number

Condition	Path	Coordination number	R(Å)	DW(Ų)
As prepared	Cu-O	3.3(2)	1.93(1)	0.0054(1)
	Cu-Cu	2.1(2)	2.97(2)	0.0050(1)
In electrolyte	Cu-O	3.4(2)	1.95(1)	0.0054(1)
	Cu-Cu	2.2(1)	2.99(1)	0.0050(1)
-1.06 V	Cu-Cu	11.9(1)	2.52(1)	0.0106(1)
-1.56 V	Cu-Cu	12.0(1)	2.53(1)	0.0106(1)
-1.86 V	Cu-Cu	12.1(1)	2.53(1)	0.0106(1)

Table S4. Structural parameters extracted of s-Cu₅Zn₁ from *in situ* Cu K-edge EXAFS during CO₂RR.Fourier-transforms (FT) were performed in the k-range between 2.5 Å⁻¹ and 10 Å⁻¹.

R[Å]: Apparent distance

CN: Coordination number

Condition	Path	Coordination		
		number	K(A)	Dw(A²)
	Zn-O	3.8(2)	1.97(1)	0.0088(1)
As prepared	Zn-Zn	11.1(1)	3.24(2)	0.0084(1)
In allo atua larta	Zn-O	3.9(2)	1.97(1)	0.0088(1)
In electrolyte	Zn-Zn	11.3(1)	3.23(2)	0.0084(1)
1.06 V	Zn-O	3.7(1)	1.97(1)	0.0088(1)
-1.00 V	Zn-Zn	11.0(1)	3.23(2)	0.0084(1)
156 V	Zn-O	3.6(2)	1.97(1)	0.0088(1)
-1.56 V	Zn-Zn	10.7(1)	3.24(2)	0.0084(1)
-1.86 V	Zn-O	3.3(2)	1.97(1)	0.0088(1)
	Zn-Zn	10.4(2)	3.24(2)	0.0084(1)
After -1.86 V	Zn-O	3.4(2)	1.97(1)	0.0088(1)
	Zn-Zn	10.4(2)	3.24(2)	0.0084(1)

Table S5. Structural parameters extracted of s-Cu₁Zn₃ from *in situ* Zn K-edge EXAFS during CO₂RR.Fourier-transforms (FT) were performed in the k-range between 2.5 Å⁻¹ and 10 Å⁻¹.

R[Å]: Apparent distance

CN: Coordination number

Condition	Path	Coordination	R(Å)	DW(Ų)
		number		
As prepared	Zn-O	3.3(1)	1.99(1)	0.0088(1)
	Zn-Zn	11.4(1)	3.23(2)	0.0084(1)
In electrolyte	Zn-O	3.8(1)	1.97(1)	0.0088(1)
	Zn-Zn	11.8(1)	3.23(2)	0.0084(1)
-1.06 V	Zn-O	3.8(1)	1.97(1)	0.0088(1)
	Zn-Zn	11.8(1)	3.23(2)	0.0084(1)
-1.56 V	Zn-O	4.0(2)	1.98(1)	0.0088(1)
	Zn-Zn	11.8(1)	3.24(2)	0.0084(1)
-1.86 V	Zn-O	4.0(2)	1.98(1)	0.0088(1)
	Zn-Zn	11.8(1)	3.24(2)	0.0084(1)

Table S6. Structural parameters extracted of s-Cu₅Zn₁ from *in situ* Zn K-edge EXAFS during CO₂RR.Fourier-transforms (FT) were performed in the k-range between 2.5 Å⁻¹ and 10 Å⁻¹.

R[Å]: Apparent distance

CN: Coordination number